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Preface to the Lectures Book of the 
1st Summer School for Advanced Studies on         

Biometrics 2003 
 

Springer LNCS 3161 

 
 

The ability to automatically recognize an individual has increasingly been acknowl-
edged as a significant step in many application domains. In the last decade, several 
recognition and identification systems based on biometric measurements have been 
proposed. Many different biological signals have been utilized: fingerprints, face and 
facial features, retinal scans, iris patterns, hand geometry, DNA traces, and gait, and 
others. Not only have research tools been developed, but a notable number of new 
applications have been observed, making studies on biometrics a very stimulating but 
also a challenging arena. 

 
All these issues pushed us to organize the 1st Summer School on Biometrics, 

which addressed the two facets of personal identity authentication: verification and 
identification. The school not only stressed the different techniques involved in the 
two processes, but also provided an in-depth roadmap on the algorithmic and 
technological issues involved in the development and integration of biometric systems. 

 
This special LNCS volume offers the efforts and major achievements of both the 

school lecturers and some of the most outstanding students in the classes. The papers 
present different biometric authentication techniques in an attempt to provide a 
comprehensive selection of state-of-the-art methods used to address applications 
demanding robust solutions. 

 
The volume is divided into two parts. The first part, composed of seven papers, 

covers a selection of the lectures given at the school classes, while the second part 
contains the four best contributions of the students. 

 
In Part I, the first paper, by Bigun et al., covers a topic expected to alleviate concerns 
on performance and convenience, a combination of several sensing modalities or 
multimodal biometrics. The lecture discusses major issues involved in multi-
biometrics to improve machine recognition performance while it exposes some recent 
findings on the human ability in person recognition. The second and third papers, by 
Boyd and Little, and Maltoni, respectively, address two specific biometric modalities: 
gait and fingerprint recognition. These papers describe two classical examples of 
behavioral (gait recognition) and physiological (fingerprint recognition) biometric 
modalities. The paper by Boyd and Little presents the psychophysics of gait 
recognition and different computational models to process image sequences to extract 
dynamic information for recognition. The paper by Maltoni is a comprehensive 
tutorial on fingerprint recognition, describing in detail all relevant issues in data 
acquisition and processing, including the latest advances in the state of the art. The 
fourth paper, by Tistarelli et al., analyzes the biological motivations for face-based 
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authentication. The lecture, while exploring the psychophysics of human vision 
relevant to person authentication, highlights several biologically inspired processes to 
improve automatic face-based recognition. The application of statistical classifiers 
and the learning theory for robust biometric authentication are discussed in the fifth 
paper, by Verri et al. The application of support vector machines, firstly proposed by 
V. Vapnik,  to biometric authentication and recognition is fully described. The sixth  
paper, by Yeshurun and Dganit, describes an exciting methodology and practice when 
using hand recognition. This contribution is well coupled with the last paper in this 
part, by Cipolla et al., which describes an interesting methodology to detect and track 
human gestures. A remarkable difference from other approaches is the use of 3D 
rather than 2D information for hand tracking and gesture recognition. 

 
The presentations from the students, which we found to deserve further attention 

from the scientific community, were chosen to be included In Part II. The first student 
paper, by Castellani et al., introduces an interesting technique to exploit 3D 
stereoscopic data for face recognition. On a similar topic is the last paper in this 
section, by Conde et al.; in this case the influence of feature localization accuracy for 
classification is addressed. The second paper, by Gokberk et al., applies genetic 
algorithms to drive the feature extraction process. The proposed model is applied to a 
set of facial features extracted from Gabor filtered images. The paper by Campadelli 
and Lanzarotti, the third in this part, describes a novel method for face recognition 
based on elastic bunch graph matching. Differently from other approaches the set of 
features (jets vector) is extracted automatically from gray level and color images. 

 
Last but not least, we wish to thank all lecturers and students and others who actively 
cooperated to make this event. We hope that the school contributed to the 
dissemination of state of the art in biometrics, as well as to advanced studies of it.  
 

 
Massimo Tistarelli 

Josef Bigun 
Enrico Grosso 
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Combining Biometric Evidence for Person

Authentication

J. Bigun1, J. Fierrez-Aguilar2�, J. Ortega-Garcia2, and J. Gonzalez-Rodriguez2

1 Halmstad University, Sweden
josef.bigun@ide.hh.se

2 Universidad Politecnica de Madrid, Spain
{jfierrez,jortega,jgonzalez}@diac.upm.es

Abstract. Humans are excellent experts in person recognition and yet
they do not perform excessively well in recognizing others only based
on one modality such as single facial image. Experimental evidence of
this fact is reported concluding that even human authentication relies
on multimodal signal analysis. The elements of automatic multimodal
authentication along with system models are then presented. These in-
clude the machine experts as well as machine supervisors. In particular,
fingerprint and speech based systems will serve as illustration. A signal
adaptive supervisor based on the input biometric signal quality is eval-
uated. Experimental results on data collected from a mobile telephone
prototype application are reported demonstrating the benefits of the re-
ported scheme.

1 Introduction

Face recognition is an important element of person authentication in humans.
Human face analysis engages special signal processing in visual cortex different
than processing of other objects [2, 3]. It is reliably observed in a number of
studies that negative bias in ability to recognize faces of another racial group
versus own racial group exists [4, 5, 6]. It has been confirmed that the hair
style and facial expressions are significant distraction factors for humans. It has
recently been revealed [7] that the lack of caricature type information hampers
the recognition more than the lack of silhouette and shading information and that
there is a gender bias in women’s and and men’s abilities to recognize faces. In [7]
it is shown that, depending on the gender to be recognized, humans were able to
recognize unfamiliar faces from photographs at the success rate of 55-75%. This
suggests that multimodal biometric information processing e.g. using signals
from body motion including the head motion, speech, and lip movements, plays
a significant role in human’s efforts of authenticating other humans.

Automatic access of persons to services is becoming increasingly important
in the information era. Although person authentication by machine has been a

� This study has been carried out while J. F.-A. and J. O.-G. were guest scientists at
Halmstad University [1].
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subject of study for more than thirty years [8, 9], it has not been until recently
that the matter of combining a number of different traits for person verification
has been considered [10, 11]. There are a number of benefits of doing so, just
to name a few: false acceptance and false rejection error rates decrease, the au-
thentication system becomes more robust against individual sensor or subsystem
failures and the number of cases where the system is not able to give an answer
(e.g. bad quality fingerprints due to manual work or larynx disorders) vanishes.
The technological environment is also appropriate because of the widespread
deployment of multimedia-enabled mobile devices (PDAs, 3G mobile phones,
tablet PCs, laptops on wireless LANs, etc.). As a result, much research work
is currently being done in order to fulfill the requirements of applications for
masses.

Two early sound theoretical frameworks for combining different machine ex-
perts in a multimodal biometric system are described in [11] and [12], the for-
mer from a risk analysis perspective [13] and the later from a statistical pattern
recognition point of view [14]. Both of them concluded (under some mild condi-
tions which normally hold in practice) that the weighted average is a good way
of conciliating the different experts. Soon after, multimodal fusion was stud-
ied as a two-class classification problem by using a number of machine learning
paradigms [15, 16, 17], for example: neural networks, decision trees and support
vector machines. They too confirmed the benefits of performance gains with
trained classifiers, and favored support vector machines over neural networks
and decision trees. The architecture of the system, ease of training, ease of imple-
mentation and generalization to mass use were however not considered in these
studies. As happens in every pattern recognition problem which is application-
oriented, these are important issues that influence the choice of a supervisor.

Interestingly enough, some recent works have nevertheless reported compa-
rable performance between fixed and trained combining strategies [18, 19] and a
debate has come out investigating the benefits of both approaches [20, 21]. As an
example, and within this debate, some researches have shown how to learn user-
specific parameters in a trained fusion scheme [22, 23]. As a result, they have
showed that the overall verification performance can be improved significantly
by considering user-dependent fusion schemes.

In this work we focus on some other benefits of a trained fusion strategy. In
particular, an adaptive trained fusion scheme is introduced here. With adaptive
fusion scheme, we mean that the supervisor readapts to each identity claim as
a function of the quality of the input biometric signal, usually depending on ex-
ternal conditions such as light and background noise. Furthermore, experiments
on real data from a prototype mobile authentication application combining fin-
gerprint and speech data are reported.

This paper is structured as follows. In Section 2, we summarize the find-
ings on mono-modal human recognition performance suggesting that individual
modalities do not have to score high to yield robust multimodal systems [7].
Beginning in section 3 with some definitions, we discuss machine supervisors for
multimodal authentication [1, 11] in the sequel. The elements of multimodal au-
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thentication along with major notations are introduced in section 4. In section 5,
the statistical framework for conciliating the different expert opinions together
with simplified and full supervisor algorithms are described. The components of
our prototype mobile authentication application, namely fingerprint and speaker
verification subsystems, are briefly described in section 6. Some experiments
are reported in section 8 using the above mentioned multimodal authentication
prototype and the performance evaluation methodology described in section 7.
Conclusions will be finally given in section 9.

2 Human Face Recognition Performance

There is a general agreement on that, approximately at the age of 12 the perfor-
mance of children in face recognition reaches adult levels, that there is already
an impressive face recognition ability by the age of 5 and that measurable pref-
erences for face stimuli exist in babies even younger than 10 minutes [24].

Our study [7], that aimed at quantifying the skills of humans in face recog-
nition of unfamiliar faces, has been supported by more than 4000 volunteers3.
We found that the lack of high spatial frequencies in visual stimuli, which re-
sult in blurred images as if face information were coming from an unfocused
camera, hamper the recognition significantly more than the lack of low spatial
frequencies, which result in stimuli similar to artist drawn faces, see Figure 1.

The face recognition questions. In all 8 questions (Q1-Q8) the task was to
identify the picture of a stimulus person among a query set consisting of 10 pic-
tures. The subjects were informed, before the start of the test, that the stimulus
image and the image to be found in the query set were taken at two different oc-
casions and that these two images could differ significantly in hair style, glasses,
expression of the face, facial hair, clothing, etc. due to the natural changes in
appearance that occur upon passage of time (a few months). In Q1-Q4 and Q8
the stimulus and the query set were shown simultaneously, in the same screen.
Questions Q5-Q7 were similar to the other questions except that they included
a memorization task in that the stimulus was shown in its own page without the
query set. When the subject wished to continue, the stimulus was replaced by
the query set, forcing the subjects to answer the question without a possibility
to see the stimulus.

The available results [7] reveal that in questions in which the face image to be
recognized was not manipulated (e.g. the high frequencies were not depreciated),
the recognition rate varied between 55-75 % in the average. A surprising result
was that the females had in the average better success in all tasks than the
males. A typical question in the test is illustrated by Figure 1.

The fact that the success rates are in the best cases (female subjects) around
80% suggests that not only mono-modal information but also multimodal bio-
metric information processing e.g. using the signals from body motion including
head motion, speech, and lip movements, plays a significant role when humans
authenticate other humans.
3 As of November 2003. The test is available at http://www.hh.se/facetest
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Q1

Fig. 1. A question illustrating the test. On the top the stimulus is given. The
subject matched the stimulus with one of the 10 images below the stimulus. The
low spatial frequencies of the stimulus were removed by signal processing.

3 Definitions

In authentication (also known as verification) applications, the users or clients
are known to the system whereas the impostors can potentially be the world
population. In such applications the users provide their claimed identities (ei-
ther true or false) and a one-to-one matching is performed. If the result of the
comparison (also score or opinion) is higher than a verification threshold, then
the claim is accepted, otherwise the claim is rejected.

In identification applications, there is no identity claim and the candidate
is compared to a database of client models, therefore a one-to-many matching
is performed in this case. In the simplest form of identification, also known as
closed-set identification, the best client model is selected. In open-set identifi-
cation, the highest score is further compared to a verification threshold so as
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Fig. 2. The proposed system model of multi-modal person authentication.

to accept/reject this candidate as belonging or not to the database (an implicit
authentication step).

In a multimodal authentication framework, various subsystems (also denoted
as experts) are present, each one of them specialized on a different trait. Each
expert delivers its opinion on a “package” of data containing an identity claim
(e.g. face images, fingerprint images, speech data, etc.) that will be referred to
as a shot. This paper is focused on combining the experts opinions (also known
as soft decisions). It will be shown that a careful design of the supervisor (also
known as fusion strategy) yields a combined opinion which is more reliable than
the best expert opinion.

4 System Model

Below is a list of the major notations we use throughout the paper, see also
Figure 2.

i Index of the experts, i ∈ 1 . . .m
j Index of the shots, j ∈ 1 . . . n, n + 1
xij Authenticity score delivered by expert i on shot j
sij Variance of xij as estimated by expert i
yj The true authenticity score of shot j
zij The error score of an expert zij = yj − xij

Note that the experts are allowed to provide a quality of the score which is
modelled to be inversely proportional to sij . This strategy is novel with respect
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to the implemented supervisors reported so far in that it is the expert who is
providing a variance on every authenticity score it delivers, not the supervisor.
It is also worth pointing out that yj can take only two numerical values corre-
sponding to “False” and “True”. If xij is between 0 and 1 then these values are
chosen to be 0 and 1 respectively. We assume that the experts have been trained
on other shots apart from j ∈ 1 . . . n, n + 1. The supervisor is trained on shots
j ∈ 1 . . . n (i.e. xij and yj are known for j ∈ 1 . . . n) and we consider shot n + 1
as a test shot on the working multimodal system (i.e. xi,n+1 is known, but yn+1

is not known and the supervisor task is to estimate it).

5 Statistical Model

The model for combining the different experts is based on Bayesian statistics
and the assumption of normal distributed expert errors, i.e. zij is considered to
be a sample of the random variable Zij ∼ N(bi, σ

2
ij). It has been shown experi-

mentally [11] that this assumption does not strictly hold for common audio- and
video-based biometric machine experts, but it is shown that it holds reasonably
well when client and impostor distributions are considered separately. Taking
this result into account, two different supervisors are constructed, one of them
based on expert opinions where yj = 1

C = {xij , sij |yj = 1 and 1 ≤ j ≤ n} (1)

while the other is based on expert opinions where yj = 0

I = {xij , sij |yj = 0 and 1 ≤ j ≤ n} (2)

The two supervisors will be referred to as client supervisor and impostor super-
visor, respectively (see Figure 2).

The client supervisor estimates the expected true authenticity score of an
input claim based on its expertise on recognizing client data. More formally, it
computes M ′′

C = E [Yn+1|C, xi,n+1] (the prime notation will become apparent
later on). In case of impostor supervisor, M ′′

I = E [Yn+1|I, xi,n+1] is computed.
The conciliated overall score M ′′ takes into account the different expertise of the
two supervisors and chooses the one which came closest to its goal, i.e. 0 for the
impostor supervisor and 1 for the client supervisor:

M ′′ =
{

M ′′
C if |1 − M ′′

C | − |0 − M ′′
I | < 0

M ′′
I otherwise (3)

Based on the normality assumption of the errors, the supervisor algorithm
described in [11] is obtained (see [13] for further background and details). In the
following, we summarize this algorithm in the two cases where it can be applied.

5.1 Simplified Supervisor Algorithm

When no quality information is available, the following simplified supervisor
algorithm is obtained by using sij = 1:
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1. (Supervisor Training) Estimate the bias parameters of each expert. In case
of the client supervisor the bias parameters are

MCi =
1
nC

∑
j

zij and VCi =
αCi

nC
(4)

where j indexes the training set C, nC is the number of shots in C and

αCi =
1

nC − 3

⎛
⎜⎝∑

j

z2
ij −

1
nC

⎛
⎝∑

j

zij

⎞
⎠

2
⎞
⎟⎠ (5)

Similarly MIi and VIi are obtained for the impostor supervisor.
2. (Authentication Phase) At this step, both supervisors are operational, so

that the time instant is always n + 1 and the supervisors have access to
expert opinions xi,n+1 but not access to the true authenticity score yn+1.
Client and impostor supervisors calibrate the experts according to their past
performance, yielding (for the client supervisor)

M ′
Ci = xi,n+1 + MCi and V ′

Ci = (nC + 1)VCi (6)

and then the different calibrated experts are combined according to

M ′′
C =

m∑
i=1

M ′
Ci

V ′
Ci

m∑
i=1

1
V ′
Ci

(7)

Similarly, M ′
Ii, V ′

Ii and M ′′
I are obtained. The final supervisor opinion is

obtained according to (3).

The algorithm described above has been successfully applied in [25] in a
multimodal authentication system combining face and speech data. Verification
performance improvements of almost an order magnitude were reported as com-
pared to the best modality.

5.2 Full Supervisor Algorithm

When not only the experts scores but also the quality of the scores are available,
the following algorithm is obtained:

1. (Supervisor Training) Estimate the bias parameters. For the client supervisor

MCi =

∑
j

zij

σ2
ij∑

j
1

σ2
ij

and VCi =
1∑
j

1
σ2

ij

(8)
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where the training set C is used. The variances σ2
ij are estimated through

σ̄2
ij = sij · αCi, where

αCi =
1

nC − 3

(∑
j

z2
ij

sij
−

(∑
j

zij

sij

)2 (∑
j

1

sij

)−1)
(9)

Similarly MIi and VIi are obtained for the impostor supervisor.
2. (Authentication Phase) First the supervisors calibrate the experts according

to their past performance, for the client supervisor

M ′
Ci = xi,n+1 + MCi and V ′

Ci = si,n+1αCi + VCi (10)

and then the different calibrated experts are combined according to (7).
Similarly, M ′

Ii, V ′
Ii and M ′′

I are obtained. The final supervisor opinion is
obtained according to (3).

The algorithm described above has been successfully applied in [13] combin-
ing human expert opinions but not in a multimodal authentication application.

5.3 Adaptive Strategy

The variance sij of the score xij is provided by the expert and concerns a par-
ticular authentication assessment. It is not a general reliability measure for the
expert itself, but a certainty measure based on qualitative knowledge of the ex-
pert and the data the expert assesses. Typically the variance of the score is
chosen as the width of the range in which one can place the score. Because such
intervals can be conveniently provided by a human expert, the algorithm in sec-
tion 5.2 constitutes a systematic way of combining human and machine expertise
in an authentication application. An example of such an application is forensics,
where machine expert approaches have been proposed [26] and human opinions
must be taken into consideration.

In this work, we propose to calculate sij for a machine expert by using a
quality measure of the input biometric signal (see Figure 2). This implies taking
into account equation (10) right, that the trained supervisor adapts the weights
of the experts using the input signal quality. First we define the quality qij of
the score xij according to

qij =
√

Qij · Qi,claim (11)

where Qij and Qi,claim are respectively the quality label of the biometric sample
used by expert i in shot j and the average quality of the biometric samples
used by expert i for modelling the claimed identity. The two quality labels Qij

and Qi,claim are supposed to be in the range [0, qmax] with qmax > 1 where 0
corresponds to the poorest quality, 1 corresponds to normal quality and qmax

corresponds to the highest quality. Finally, the variance parameter is calculated
according to

sij =
1
q2
ij

(12)
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6 Monomodal Experts

6.1 Speaker Expert

For the experiments reported in this work, the GMM-based speaker expert from
Universidad Politecnica de Madrid used in the 2002 NIST Speaker Recognition
evaluation [27] has been used. Below we briefly describe the basics, for more
details we refer to [27, 28].

Feature extraction. Short-time analysis of the speech signal is carried out
by using 20 ms Hamming windows shifted 10 ms. For each analysis win-
dow t ∈ [1, 2, . . . , T ], a feature vector mt based on Mel-Frequency Cepstral
Coefficients (MFCC) and including first and second order time derivative
approximations is generated. The feature vectors M = {m1,m2, . . . ,mT }
are supposed to be drawn from a user-dependent Gaussian Mixture Model λ
which is estimated in the enrollment phase via MAP adaptation of a Univer-
sal Background Model λUBM . For our tests, the UBM is a text-independent
128 mixture GMM which was trained by using approximately 8 hours of
Spanish mobile speech data (gender balanced).

Similarity computation. Given a test utterance parameterized as M and a
claimed identity modeled as λ, a matching score x′

ij is calculated by using
the log-likelihood ratio

x′
ij = log (p [M |λ]) − log (p [M |λUBM ]) (13)

Score normalization. In order to generate an expert opinion xij between 0
and 1, the matching score x′

ij is further normalized according to

xij =
1

1 + e−c·x′
ij

(14)

The parameter c has been chosen heuristically on mobile speech data not
used for the experiments reported here.

6.2 Fingerprint Expert

For the experiments reported in this work, the minutiae-based fingerprint expert
described in [29] has been used. Below we describe the basics, for more details
we refer to [29, 30].

Image enhancement. The fingerprint ridge structure is reconstructed accord-
ing to: i) grayscale level normalization, ii) orientation field calculation, ac-
cording to [31] iii) interest region extraction, iv) spatial-variant filtering
according to the estimated orientation field, v) binarization, and vi) ridge
profiling.
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Feature extraction. The minutiae pattern is obtained from the binarized pro-
filed image as follows: i) thinning, ii) removal of structure imperfections from
the thinned image, and iii) minutiae extraction. For each detected minutia,
the following parameters are stored: a) the x and y coordinates of the minu-
tia, b) the orientation angle of the ridge containing the minutia, and c) the x
and y coordinates of 10 samples of the ridge segment containing the minutia.
An example fingerprint image from MCYT Database [32], the resulting bi-
nary image after image enhancement, the detected minutiae superimposed on
the thinned image and the resulting minutiae pattern are shown in Figure 3.

Fig. 3. Fingerprint feature extraction process

Similarity computation. Given a test and a reference minutiae pattern, a
matching score x′

ij is computed. First, both patterns are aligned based on the
minutia whose associated sampled ridge is most similar. The matching score
is computed then by using a variant of the edit distance on polar coordinates
and based on a size-adaptive tolerance box. When more than one reference
minutiae pattern per client model are considered, the maximum matching
score obtained by comparing the test and each reference pattern is used.

Score normalization. In order to generate an expert opinion xij between 0
and 1, the matching score x′

ij is further normalized according to

xij = tanh
(
c · x′

ij

)
(15)

The parameter c has been chosen heuristically on fingerprint data not used
for the experiments reported here.

7 Verification Performance Evaluation

Biometric verification can be considered as a detection task, involving a tradeoff
between two type of errors: i) Type I error, also denoted as False Rejection
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(FR) or miss (detection), occurring when a client, target, genuine, or authorized
user is rejected by the system, and ii) Type II error, known as False Acceptance
(FA) or false alarm, taking place when an unauthorized or impostor user is
accepted as being a true user. Although each type of error can be computed for
a given decision threshold, a single performance level is inadequate to represent
the full capabilities of the system and, as such a system has many possible
operating points, it is best represented by a complete performance curve. These
total performance capabilities have been traditionally shown in form of ROC
(Receiver -or also Relative- Operating Characteristic) plots, in which FA rate
versus FR rate is depicted. A variant of this, the so-called DET (Detection
Error Tradeoff) plot [33], is used here; in this case, the use of a normal deviate
scale makes the comparison of competing systems easier. Moreover, the DET
smoothing procedure introduced in [34], which basically consists in Gaussian
Mixture Model estimation of FA and FR curves, has been also applied.

A specific point is attained when FAR and FRR coincide, the so-called EER
(equal error rate); the global EER of a system can be easily detected by the
intersection between the DET curve of the system and the diagonal line y = x.
Nevertheless, and because of the step-like nature of FAR and FRR plots, EER
calculation may be ambiguous according to the above-mentioned definition, so an
operational procedure for computing the EER must be followed. In the present
contribution, the procedure for computing the EER proposed in [35] has been
applied.

8 Experiments

8.1 Database Description and Expert Protocol

Cellular speech data consist of short utterances in Spanish (the mobile number
of each user). 75 users have been acquired, each one of them providing 10 ut-
terance samples from 10 calls (within a month interval). The first 3 utterances
are used as expert training data and the other 7 samples are used as expert
test data. The recordings were carried out by a dialogue-driven computer-based
acquisition process, and data were not further supervised. Moreover, 10 real im-
postor attempts per user are used as expert testing data, where each impostor
knew the true mobile number and the way it was pronounced by the user he/she
was forgering. Taking into account the automatic acquisition procedure and the
highly skilled nature of the impostor data, near worst-case scenario has been
prevailing in our experiments.

Fingerprint data from MCYT corpus has been used. For a detailed descrip-
tion of the contents and the acquisition procedure of the database, see [32]. Be-
low, some information related to the experiments we have conducted is briefly
described.

MCYT fingerprint subcorpus comprises 330 individuals acquired at 4 dif-
ferent Spanish academic sites by using high resolution capacitive and optical
capture devices. For each user, the 10 prints were acquired under different ac-
quisition conditions and levels of control. As a result, each individual provided
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a total number of 240 fingerprint images to the database (10 prints × 12 sam-
ples/print × 2 sensors/sample). Figure 4 shows three examples acquired with
the optical scanner under the 3 considered levels of control.

Fig. 4. Fingerprint images from MCYT corpus. Level of control from left to
right: low, medium and high

Only the index fingers of the first 75 users in the database are used in the
experiments. 10 print samples (optical scanner) per user are selected, 3 of them
(each one from a different level of control) are used as expert training data and
the other 7 are used as expert testing data. We have also considered a worst-case
scenario using for each client the best 10 impostor fingerprint samples from a
set of 750 different fingerprints.

All fingerprint images have been supervised and labelled according to the
image quality by a human expert [29]. Basically, each different fingerprint image
has been assigned a subjective quality measure from 0 (lowest quality) to 9
(highest quality) based on image factors like: incomplete fingerprint, smudge
ridges or non uniform contrast, background noise, weak appearance of the ridge
structure, significant breaks in the ridge structure, pores inside the ridges, etc.
Figure 5 shows four example images and their labelled quality.

As a conclusion, each expert protocol comprises 75×7 client test attempts
and 75×10 impostor test attempts in a near worst-case scenario.

8.2 Supervisor Protocol

Several methods have been described in the literature in order to maximize
the use of the information in the training samples during a test [14]. For the
error estimation in multimodal authentication systems, variants of the jackknife
sampling using the leave-one-out principle are the common choice [23, 25]. In
this work, and depending on the experiment at hand, one of the three following
supervisor protocols has been used:
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Fig. 5. Fingerprint images from MCYT corpus. Quality labelling from left to
right: 0, 3, 6 and 9

Non-trained. All scores from client and impostor test attempts are used as
supervisor test scores.

Trained-jacknife. One user is left out for supervisor testing, the supervisor
training is carried out on the other users, the scheme is rotated for all the
users and finally the errors are averaged.

Trained-bootstrap. N users are randomly selected with replacement for train-
ing, the testing is performed on the other users, the scheme is iterated B
times and finally the errors are averaged.

8.3 Results

In the first experiment, we evaluate the verification performance of the three
following fusion strategies: i) Sum Rule [12], which consists in averaging expert
outputs; ii) The non-adaptive Bayesian Conciliation scheme [11] as described in
section 5.1 (i.e. with sij = 1 for all authentication claims); and iii) The adaptive
fusion strategy based on signal quality described in section 5.3. The non-trained
supervisor protocol has been used for testing the Sum Rule approach whereas
the trained-jacknife protocol has been followed for the other two trained fusion
approaches. For the fingerprint expert, we have used the quality labels in MCYT
database normalized into the range [0, 2]. For the speech expert sij = 1 is used.
Trade-off verification results comparing the three fusion approaches are shown
in Figure 6. As a result, any of the three fusion strategies clearly outperforms
both the fingerprint (EER=4.55%) and the speaker expert (EER=4.32%). We
also observe that the Sum Rule approach (EER=1.66%) is outperformed by
the simplified Bayesian Conciliation scheme (EER=1.33%). The introduction of
quality signals leads to further verification performance improvements in almost
every working point (EER=0.94%).

In Figure 7, the client/impostor decision boundaries for one left-out user of
the trained-jacknife supervisor protocol is depicted together with score maps
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Fig. 6. Verification performance of fingerprint/speech experts and Sum/
Bayesian supervisors

of both training (background) and testing (enlarged) data. We note that the
Sum Rule scheme does not take into account the actual client and impostor
distributions, that is a skilled expert is weighted equally as a less skilled expert.

Some examples that may provide an intuitive idea about how the supervisor
is adapted depending on the image quality of the input fingerprints are shown
in Figure 8. We plot the decision boundaries for 2 different left-out users of the
supervisor testing protocol together with score maps of both the training (back-
ground) and testing (enlarged) data. In the case the score quality is considered,
we observe that the supervisor is adapted so as to increase or reduce the weight
of the fingerprint expert opinion based on the fingerprint quality: the higher the
image quality the higher the fingerprint expert weight and the lower the quality
the lower the weight.

In the last experiment, we study the influence of an increasing number of
clients N in the supervisor training set over the verification performance. In this
case, the trained-bootstrap supervisor protocol with B=200 iterations has been
used. As it is shown in Figure 9, the error rate decreases monotonically with the
number of clients in the supervisor training set. In particular, a fast EER decay
occurs for the first 10 clients and minor verification performance improvements
are obtained for more than 20 users.

9 Conclusions

In this paper we have first summarized evidence that even one of the best known
mono-modal recognition engines (human face recognition) is not able to reach a
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recognition rate beyond 80 % when it is limited to a single view, i.e. a common
approach in commercial applications. This has served as the motivation for,
beginning with some common terminology and notations, the development of
multi-modal automatic person authentication system models [11]. We have also
explored an adaptive supervisor strategy and reviewed an implementation based
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on signal quality of such a scheme [1]. The elements of a mobile authentication
application based on speech and fingerprint data have been described and some
experiments using this prototype on real data have been reported.

From the experiments, we conclude that multi-modal systems combining dif-
ferent biometric traits (EER=4.55% and EER=4.32% respectively for fingerprint
and speaker experts in a near-worst case scenario) and using simple supervisor
algorithms such as averaging can provide great benefits (EER=1.66%) in terms
of verification error rates. Moreover, a Bayesian Conciliation fusion strategy
have also been tested. In this case, it has been shown that weighting each expert
output according to its past performance decreases error rates (EER=1.33%).
Finally, we have also shown that the referenced adaptive fusion strategy can fur-
ther improve the verification performance (EER=0.94%) compared to a trained
but non-adaptive fusion strategy.

Future work includes the investigation of automatic quality measures for the
different audio- and video-based biometric signals and the exploitation of the
user-specific characteristics in the overall multi-modal authentication architec-
ture.
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Abstract. Psychological studies indicate that people have a small but
statistically significant ability to recognize the gaits of individuals that
they know. Recently, there has been much interest in machine vision
systems that can duplicate and improve upon this human ability for
application to biometric identification. While gait has several attractive
properties as a biometric (it is unobtrusive and can be done with simple
instrumentation), there are several confounding factors such as variations
due to footwear, terrain, fatigue, injury, and passage of time. This paper
gives an overview of the factors that affect both human and machine
recognition of gaits, data used in gait and motion analysis, evaluation
methods, existing gait and quasi gait recognition systems, and uses of
gait analysis beyond biometric identification. We compare the reported
recognition rates as a function of sample size for several published gait
recognition systems.

1 Introduction

People often feel that they can identify a familiar person from afar simply by
recognizing the way the person walks. This common experience, combined with
recent interest biometrics, has lead to the development of gait recognition as a
from of biometric identification.

As a biometric, gait has several attractive properties. Acquisition of images
portraying an individual’s gait can be done easily in public areas, with simple
instrumentation, and does not require the cooperation or even awareness of the
individual under observation. In fact, it seems that it is the possibility that a
subject may not be aware of the surveillance and identification that raises public
concerns about gait biometrics [1].

There are also several confounding properties of gait as a biometric. Unlike
finger prints, we do not know the extent to which an individual’s gait is unique.
Furthermore, there are several factors, other than the individual, that cause
variations in gait, including footwear, terrain, fatigue, and injury.

This paper gives an overview of the factors that affect both human and ma-
chine recognition of gaits, data used in gait and motion analysis, evaluation
methods, existing gait and quasi gait recognition systems, and uses of gait anal-
ysis beyond biometric identification.
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1.1 Gait and Gait Recognition

We define gait to be the coordinated, cyclic combination of movements that result
in human locomotion. The movements are coordinated in the sense that they
must occur with a specific temporal pattern for the gait to occur. The movements
in a gait repeat as a walker cycles between steps with alternating feet. It is
both the coordinated and cyclic nature of the motion that makes gait a unique
phenomenon.

Examples of motion that are gaits include walking, running, jogging, and
climbing stairs. Sitting down, picking up an object, and throwing and object are
all coordinated motions, but they are not cyclic. Jumping jacks are coordinated
and cyclic, but do not result in locomotion.

Therefore, we define gait recognition to be the recognition of some salient
property, e.g., identity, style of walk, or pathology, based on the coordinated,
cyclic motions that result in human locomotion. In the case of biometric gait
recognition, the salient property is identity. We make the distinction between gait
recognition and what we call quasi gait recognition in which a salient property
is recognized based on features acquired while a subject is walking, but the
features are not inherently part of the gait. For example, skeletal dimensions may
be measured during gait and used to recognize an individual. However, skeletal
dimensions may be measured other ways, and are therefore not a property of
the gait.

1.2 Human Perception of Gait

The ability of humans to recognize gaits has long been of interest to psycholo-
gists. Johansson [2, 3] showed that humans can quickly (in less than one second)
identify that a pattern of moving lights, called a moving light display (MLD),
corresponds to a walking human. However, when presented with a static image
from the MLD, humans are unable to recognize any structure at all. For exam-
ple, without knowing that the dots in a single frame of the sequence shown in
Fig. 1 are on the joints of a walking figure, it is difficult to recognize them as
such. What we cannot show in a print medium is, that within a fraction of a
second after the dots move, one can recognize them as being from a human gait.

Johansson’s contributions are important because they provide an experimen-
tal method that allows one to view motion extracted from other contextual infor-
mation. With the context removed, the importance of motion becomes obvious.
Johansson also suggests a set of gestalt rules that humans use to connect the
moving dots and infer structure.

Bertenthal and Pinto [4] identify the following three important properties in
the human perception of gaits.

– Frequency entrainment. The various components of the gait must share a
common frequency.
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Fig. 1. Frames from a moving light display of a person walking. People can
quickly identify that the motion is a gait from the moving sequence, but have
difficulty with static frames.

– Phase locking. The phase relationships among the components of the gait
remain approximately constant. The lock varies for different types of loco-
motion such as walking versus running.

– Physical plausibility. The motion must be physically plausible human motion.

As shown in Fig. 2, there are motions at different frequencies within a gait.
However, the gait has a fundamental frequency that corresponds to the complete
cycle. Other frequencies are multiples of the fundamental. This is frequency
entrainment. It is not possible to walk with component motions at arbitrary
frequencies.

When the motions are at entrained frequencies, the phase of the motions
must be locked, i.e., the timing patterns of the motions are fixed. In a typical
gait, the left arms swings in phase with the right leg and opposite in phase with
the left leg, a pattern that is fixed throughout the gait. This is phase locking.

To understand physical plausibility, consider the motion of the star of an
action movie such as Jackie Chan or Jet Li. On occasion, the actors will use wires
to allow them to perform feats that would not be physically possible otherwise.
However, even though the wires are not visible in the movie, viewers know that
the wires are there because the motion is not physically plausible without them.
Currently, physical plausibility is not employed in machine analysis of gait, other
than by the use of exemplars which are real, and therefore physically plausible.

It appears that there is a special connection between human gaits and human
perception. Cohen et al. [5] observed that while humans can easily recognize
human motion, they have more difficulty recognizing animal motion. Cohen et al.
explain this observation by suggesting that humans rely on the same mechanisms
that they use to generate their own gait to perceive the gaits of others. If correct,
this may indicate how to improve machine perception of gait.
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(a)

(b)

(c)

Fig. 2. Stylized body and legs showing sources of different frequencies in a syn-
thesized gait: (a) the oscillation of a swinging limb repeats periodically, e.g.,
left foot fall to left foot fall, (b) the silhouette of a body repeats at twice that
frequency, i.e., step to step, and (c) the pendulum motion of limbs has vertical
motion at twice the frequency of the limbs horizontal motion.

1.3 Important Factors in Evaluation of Gait Analysis Systems

There are many and varied approaches to gait analysis. In order to interpret them
in some common context, we suggest the following approach to understanding
gait analysis systems.

1. Identify the oscillating signals that the system derives from the cyclic motion.
2. Determine how the oscillating signals establish frequency entrainment, phase

locking, and physical plausibility.
3. Determine how the oscillating signals translate into features that can be used

for recognition.

2 Potential for Gait as a Biometric

The use of gait as a biometric for human identification is still young when com-
pared to methods that use voice, finger prints, or faces. Thus, it is not yet clear
how useful gait is for biometrics. In this section we consider evidence from several
sources, including known properties of the human body and human performance
to gain insight.
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2.1 Optimistic Viewpoint

Bhanu and Han [6] present an optimistic view of the potential for biometric gait
recognition. Their analysis is built upon a gait recognition system that measures
a subject’s skeletal dimensions as he walks. Therefore, it is possible to estimate
an upper bound on the performance of the system from known distributions of
skeletal dimensions in a human population. They compute their estimate using
a Monte Carlo simulation seeded with the population statistics and a set of
assumptions about the accuracy of the skeletal dimension measurements. Plots
showing the bounds they compute are in Fig. 8.

Since theirs is a quasi gait recognition system, it is reasonable to ask whether
or not the bound might reasonably apply to gait recognition too. Do skeletal
dimensions sufficiently constrain a gait for the purposes of recognition? The
answer is unknown, but work in mechanical engineering can shed some light.
McGeer [7, 8], and later Coleman and Ruina [9], Garcia et al. [10], and Collins
et al. [11] have demonstrated passive mechanical walkers. These are mechanical
machines that oscillate without external force to produce a gait as the machine
falls down an incline. This implies that gait is a natural bi-product of the struc-
ture of the human body, and the mass and skeletal dimensions of the body are
what determine the oscillations that produce the gait. Thus, to a large extent,
Bhanu and Han are right to equate skeletal dimensions with gait. However, mass
and other factors contribute to a human gait.

It is worth noting here that many gait analysis systems could benefit from
the definition of a standard or normal gait. Passive mechanical walkers have the
potential to define such a gait because they show the innate gait of the kinematic
structure in the absence of muscular forces.

Bhanu and Han’s results show one important feature of gait and other bio-
metric systems. Regardless of the quality of biometric, the system performance
in terms of recognition rate drops with increased population size. The best that
one can hope for is that the rate at which performance drops is tolerable.

2.2 Human Performance

People often have the impression that they can recognize friends by their gaits.
Although this ability has been confirmed by experiments using MLDs, human
ability to recognize people from motion is limited.

For example, Barclay et al. [12], and Kozlowski and Cutting [13] showed
that humans can recognize the gender of a walker from an MLD. However, for
short exposures to the MLD (two seconds or less), humans were no better than
random. It required longer exposures, on the order of four seconds, for humans
to perform better than random. Even at that, the recognition rate was 66% when
random was 50%.

Cutting and Kozlowski [14] also showed that people can recognize their
friends from MLDs. Again, this result needs clarification. The experiment in-
volved six students who knew each other well. Experimenters recorded MLDs
for the six students. Then, at a later date, the original six, plus a seventh who
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was also a friend, tried to recognize their friends from the MLDs. The correct
recognition rate was 38% which is significantly better than random (17%). Thus,
the conclusion that people can recognize friends from motion is correct, but not
well enough to be a reliable form of identification. It seems that people rely on
other contextual clues more than they realize.

2.3 Confounding Factors

If passive mechanical walkers are a good indication, then the primary determi-
nant of a gait is a person’s skeletal dimensions and mass. Other factors play a
role too, including:

– terrain (Laszlo et al. [15] illustrate variations in human gait due to terrain
in computer graphic),

– injury (Murray et al. [16] and Murray [17] describe the effects of injury on
gait),

– footwear, (von Tscharner [18] shows that muscle activation in walkers
changes when people walk bare foot as opposed to wearing shoes),

– muscle development,
– fatigue,
– training (athletic training or military marching drills),
– cultural artifacts (e.g., mince, swagger, and strut), and
– personal idiosyncrasies.

Each of these factors may confound biometric gait recognition.

3 Data in Gait Recognition

In this section we give an overview of the types of data used in gait and motion
analysis systems.

3.1 Background Subtraction

Background subtraction is a method for identifying moving objects against a
static background. Although there are many variations on the theme, the basic
idea is to

1. estimate the pixel properties of the static background,
2. subtract actual pixel values from the background estimates, and
3. assume that if the difference exceeds a given threshold that the pixel must

be part of a moving object.

Normally one follows the last step by forming connected components, or blobs,
of moving pixels that correspond to the moving objects. Factors that confound
background subtraction include background motion, moving objects that are
similar in appearance to the background, background variations over long pe-
riods of time, and objects in close proximity merging together. In general, the
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variations on the theme of background subtraction involve selecting pixel prop-
erties to compare, background models, and innovations to address any number of
confounding factors. Examples include Hunter et al. [19], Horprasert et al. [20],
Stauffer and Grimson [21], and Javed et al. [22].

Fig. 3 shows an example of background subtraction taken from the MoBo
database [23].

(a) (b)

Fig. 3. Example of background subtraction from MoBo database [23]: (a) orig-
inal image (deliberately blurred to conceal the subject’s identity), and (b) seg-
mented image.

3.2 Silhouettes

Background subtraction provides a set of pixels within the region of a moving
object. Alternatively, one may only be interested in the outline of that region.
We refer to this outline as a silhouette. An examples of gait analysis that uses
silhouettes is in Baumberg and Hogg [24].

3.3 Optical Flow

A motion field, is a projection of motion in a scene onto the image plane. Optical
flow refers to the movement or flow of pixel brightness in an image sequence,
and is a quantity that we can estimate from images sequences. Although the
motion field and optical flow are not the same, we often use optical flow as an
approximation to the motion field since most flow is caused by observed motion.

Barron, Jepson and Fleet [25] provide an excellent overview of several op-
tical flow algorithms that compares their performance. They divide the al-
gorithms into four categories: differential, region-matching, energy-based, and
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phase-based. We will consider only the first two categories since they are the
most popular.

Differential flow algorithms find solutions to a differential equation, the op-
tical flow constraint equation [26],

Ixu + Iyv + It = 0

where I is the spatiotemporal (x, y, and t) image sequence, Ix, Iy, It are the
partial derivatives of I with respect to space and time, and u and v are the
x and y image velocities, i.e., the optical flow. Fig. 4 shows a sample frame of
optical flow computed using the Lucas and Kanade [27] least-squares algorithm
for differential flow.

(a) (b)

(c) (d)

Fig. 4. Example of Lucas and Kanade [27] least squares optical flow: (a) original
image from a sequence, (b) validity map, and (c) x- and (d) y-direction optical
flow. In (b) black, gray and white mean no flow, gradient flow and least-squares
flow respectively. In (c) and (d) gray is zero, black is negative (left/up), and
white is positive (right/down).

Region-matching optical flow algorithms compute flow by comparing regions
in consecutive images of a sequence. When regions match, the algorithms con-
clude that the region has moved and sets the flow accordingly. Fig. 5 shows
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an example of optical flow computed using the region-matching algorithm of
Bulthoff et al. [28].

(a) (b) (c)

Fig. 5. Example of Bulthoff et al. [28] region-matching optical flow: (a) original
image from a sequence, and (b) x- and (c) y-direction optical flow. In (b) and
(c) gray is zero, black is negative (left/up), and white is positive (right/down).

3.4 Motion Energy and Motion History Images

Davis and Bobick [29] describe a motion energy image (MEI) and a motion
history image (MHI), both derived from temporal image sequences. In the MEI,
image pixels indicate whether or not there has been any motion at that pixel
in previous frames. Note that an MEI cannot indicate in what order the pixels
experienced the motion and therefore cannot encapsulate timing patterns in a
motion. The MHI addresses this by indicating how recently motion occurred at
each pixel. The brighter the region in an MHI, the more recent the motion. Fig. 6
shows images and the MHI from a sample sequence. Davis and Bobick [29] show
that shapes in the MEI and MHI can be used to recognize various activities.

4 Evaluation of Gait Biometrics

4.1 Evaluation Methods

Typically, gait biometrics are tested in a recognition system like that shown in
Fig. 7. The system extracts a set of descriptive features for an unknown test
subject. It then compares the features to those of known subjects stored in a
database. This model is adequate for evaluation of recognition and surveillance
situations where there is no prior information provided about the identity of the
subject.
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Fig. 6. Example of a motion history image (MHI) [29]. The leftmost three images
show the the motion sequence while the image on the right is the resulting MHI.

Fig. 7. Typical system for testing performance of gait recognition and other
biometric systems.

Two broad approaches to evaluation have emerged. The first is to estimate
the rate of correct recognition, while the second is to compare the variations in
a population versus the variations in measurements. Neither method is entirely
satisfactory, but they both provide insights into performance. We discuss both
approaches in the remainder of this section.
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4.2 Recognition Rate

Estimating the rate of correct recognition for a gait biometric has an intuitive
appeal. It seems natural to think of system performance in terms of how often
the system gets it right.

To arrive at such estimates, the procedure is to take a sample of the pop-
ulation of interest. One then divides the sample into two partitions, one for
training the system (the database in Fig. 7), and one for testing. The estimated
rate of correct recognition is the fraction of the test set that the system classifies
correctly.

Such an estimate is extremely sensitive to context. Variations in any of the
following factors will affect the resulting estimate.

– Randomization of sample: For the estimate to have any relevance outside
the experiment, the sample must be a randomly selected from the population
of interest. Such sampling is time-consuming and expensive. Consequently,
most estimates produced in research are based on a biased sample that re-
flects mostly graduate. Campbell and Stanley [30] give one of the most thor-
ough treatments of experimental design and the need for randomization.

– Randomization of partitions: It is essential that the training and test
partitions be selected at random. Failure to do this can introduce a bias into
the estimate. Cohen [31] gives excellent descriptions of methods for cross
validation that avoid such biases.

– Sampling conditions: It is time-consuming to acquire samples over ex-
tended periods of time, and over a variety of imaging conditions. Thus, cur-
rent samples are biased toward conditions in a single session using a single
imaging apparatus. When researchers have reported results for samples that
span weeks to months, e.g., Tanawongsuwan and Bobick [32], recognition
rates drop drastically when compared to samples acquired in a single ses-
sion.

– Sample size: Recognition rates drop with increases in sample size. For ex-
ample, see the trends in the plots in Bhanu and Han [6] and Ben-Abdelkader
et al. [33]. Intuitively, this occurs because the larger the sample, the more
opportunities there are to make a mistake. In terms of the features used for
recognition, as the sample size increases, the feature space becomes crowded,
thus providing less resolution between individuals.

In spite of their intuitive appeal, recognition rates must be considered only within
the context in which they are produced. Failure to consider any of the above fac-
tors in comparing recognition rates will almost certainly lead to false conclusions.

4.3 Analysis of Variance

While there is no way to avoid the issues of sample randomization, partition
randomization, and sampling conditions, there are methods for dealing with
variations in sample size. Consider the f statistic,

f =
MSbetween

MSwithin
,



30 J.E. Boyd and J.J. Little

where MSbetween and MSwithin are the mean-square errors between classes (be-
tween individuals) and within classes (for a single individual) due to the accumu-
lation of all factors that cause a gait and its measured features to vary. When f
is large, individuals are spread widely throughout the feature space with respect
to the variations for an individual. When f = 1, then individuals are indistin-
guishable. A large f does not eliminate the trend toward lower recognition rates
with sample size, but it does reduce the rate at which recognition deteriorates.

The f statistic is the foundation of analysis of variance (ANOVA) [34].
ANOVA is a method of hypothesis testing that uses the known distribution
of f under the condition that classes/individuals are indistinguishable, also re-
ferred to as the null hypothesis. If a sample produces a value of f that is large
enough, one rejects the null hypothesis and concludes that there is significant
variation between classes. Note that sample size is a parameter of the known
distributions of f , so f may be interpreted for samples of different size. Bobick
and Johnson [35] describe expected confusion, E[A], a number that is directly
related to f (E[A] = 1/

√
f), and its role in predicting performance for varying

sample size.
While f address issues of sample size, it is not clear how to compare f for

different feature spaces, especially when data can be linear, as in a persons height,
or directional, as in the phase of a signal. Directional ANOVA exists [36], but is
it correct to compare the values of f directly. Furthermore, the distribution of
f can depend on the dimensionality of the feature space. Currently, f appears
to be a useful way to compare results acquired with different sample sizes, but
it needs further development.

5 Existing Gait Recognition Systems

In this section, we describe and compare a selection of biometric gait recognition
systems. As the previous section suggested, it is difficult to compare different
systems directly when each is tested with a different sample. To address this issue
here, in Fig. 8 we plot the recognition rate versus sample size for the methods
that report recognition rates. Note that this does not adequately address all the
issues of sampling, but serves only to provide an approximate picture of the
state-of-the-art in gait recognition.

In the following subsections, we categorize the methods by their source of
oscillations: shape, joint trajectory, self similarity, and pixel.

5.1 Shape Oscillations

Fig. 9 shows the shape-of-motion system developed by Little and Boyd [37]. The
system uses optical flow to identify a moving figure in a sequence of images.
It then describes the shape of the moving figure with a set of scalars derived
from Cartesian moments. For example, the descriptors include the x and y co-
ordinates of the object centroid, the x and y coordinates of the object centroid
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Fig. 8. Performance comparison of biometric gait recognition systems show-
ing recognition rate versus sample size. The curve labeled Random indicates
the expected recognition rate for random guesses. CK(77) refers to Cutting
and Kozlowski [14], BH(02)a and BH(02)b refer to Bhanu and Han [6]
5mm and 40mm resolution respectively, LB(98) refers to Little and Boyd [37],
BCND(01) refers to Ben-Abdelkader et al. [38], SN(01) refers to Shutler and
Nixon [39], TB(01) refers to Tanawongsuwan and Bobick [32], CNC(03) refers
to Cunado et al. [40], B(03) refers to Boyd [41], and BCD(02) refers to Ben-
Abdelkader et al. [33].

weighted by the magnitude of the optical flow, and the aspect ratio of the dis-
tribution of pixels. When taken over the duration of the sequence, each scalar
forms a time series. The shape-of-motion system extracts the oscillations from
each series, then finds the frequency and phase of the oscillations, thus perform-
ing frequency entrainment and phase locking. The result is a set of m phases,
one per scalar. The system takes one phase as a reference, then subtracts the
reference to produce a feature vector of m− 1 phases. In their evaluation, Little
and Boyd achieved a recognition rate of approximately 92% for a sample size of
six.

Shutler and Nixon [39] extend the shape-of-motion concept to use Zernike
velocity moments to compute shape descriptions over an entire sequence, rather
than on a frame by frame basis. They test their system on the shape-of-motion [37]
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Fig. 9. The shape-of-motion gait recognition system [37].
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database, achieving recognition rates in the range of 62% to 100%, depending
upon which velocity moments they include in their feature vector, for a sample
size of six.

5.2 Joint Trajectory Patterns

Tanawongsuwan and Bobick (2001) [32] use joint angle trajectories measured
using a magnetic-marker motion-capture system. As such, theirs is not a vision
system and would not be practical for biometrics, but it does indicate the po-
tential for joint angle trajectory features, if they were to be measured by some
other means. They estimate the frequency of the gait and align the left and
right, hip and knee joint trajectories to a common point in the gait cycle. They
also resample the sequences to a common length. These steps effectively perform
frequency entrainment and phase locking. The set of four trajectories combine
to form one large feature vector used for recognition.

Tanawongsuwan and Bobick evaluated their system on a sample size of 18
and achieved a recognition rate of 73%. They further tested their system using
an additional eight test sequences captured at a later date. When recognizing
this latter sample using training data from the first sample, the recognition rate
dropped to 42%. This demonstrates the deterioration in performance that occurs
when samples span long periods of time.

Cunado et al. [40] extract a hip joint trajectory from a sequence of images.
They acquire a trajectory for the hip closest to the camera only. They then
use Fourier components of the trajectory as features for recognition. A test of
their method on a database of size 10 yields recognition rates of 80% and 100%
for Fourier features, and phase-weighted Fourier features respectively. Given the
significance of phase locking in human perception of gaits, it is not surprising that
the inclusion of phase information in the feature vector improves the recognition
rate.

5.3 Temporal Patterns in Self-Similarity

As a person walks, the configuration of their body repeats periodically. For this
reason, images in a gait sequence tend to be similar to other images in the
sequence when separated in time by the period of the gait (the time between left
foot strikes) and half the period (the time between left and right foot strikes).
Fig. 11 illustrates this point.

Ben-Abdelkader et al. [38] exploit this self similarity to create a represen-
tation of gait sequences that is useful for gait recognition. From an image se-
quence, they construct a self-similarity image in which pixel intensities indicate
the extent to which two images in the sequence are alike, i.e., pixel (i, j) in the
self-similarity image indicates the similarity of the images at times ti and tj .
With a cyclic motion such as a gait, the self-similarity image has a repeating
texture. The frequency of the gait determines the rate at which the texture re-
peats (and thus is a form of frequency entrainment). Furthermore, variations in
the timing of motions between individuals become details in the self-similarity
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Fig. 11. Self similarity in gait sequences. Images separated by a full or half
period of the gait tend to be alike.

image texture (and thus is a form of phase locking). Self-similarity images are
large, so Ben-Abdelkader et al. use a principal component analysis on the space
of similarity images to create a lower-dimensional eigenspace of images. The pro-
jections of self-similarity images onto this eigenspace become features for gait
recognition.

Ben-Abdelkader et al. [38] test their system on the shape-of-motion data-
base [37] and achieve a recognition rate of 93% with a sample size of six.

5.4 Pixel Oscillations

When a walker appears to be stationary in an image sequence, either as a result
of tracking or walking on a treadmill, the cyclic motions of the gait result in
intensity oscillations in pixels. The frequency of the gait and the timing of the
component motions determine the frequency and phase of the pixel oscillations.
Boyd [42] demonstrated that an array of phase-locked loops (PLL), one per pixel,
can synchronize internal oscillators to the frequency and phase of pixel oscilla-
tions. This synchronization process inherently performs frequency entrainment
and phase locking.

Boyd uses a phasor (Fig. 12), a complex number that represents a rotating
vector, to represent the magnitude and phase of the oscillations at each pixel.
Thus, once the PLL synchronization occurs, one can construct a complex image
of phasors in which each pixel indicates the extent to which there are oscillations
and the relative timing of the oscillations (Fig. 13). Procrustes shape analysis [43,
36] (Fig. 14) is a method for the statistical comparison of shapes represented as
complex vectors. Thus, Procrustes shape analysis provides an ideal method to
compare vectors of phasors that represent image oscillations.
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Fig. 12. A phasor, or phase vector, is a complex vector that rotates about the
origin, generating a sinusoid when projected onto the real axis. The magnitude
and direction of the vector gives the amplitude and phase of the sinusoid respec-
tively. Timing is given by the relative phases. Here phasor A leads phasor B.

(a) (b) (c)

Fig. 13. Sample output of phase-locked loops: (a) superposition of frames from
the input sequence, (b) magnitude of oscillations, and (c) phase of oscillations
(note the phase wrap that results from the display of phase as a gray level).

Boyd [41] tested the phase-locked loops for the ability to recognize individ-
ual people using the shape-of-motion database [37] and the MoBo database [23].
With shape-of-motion data, recognition was perfect, 100% with sample size six.
Using the MoBo database recognition rates were between 47% and 91% depend-
ing on whether or not sequences portraying the same style of gait were allowed
to match. Boyd also observed that ignoring the phase information lowered the
recognition rate in all cases.

In related work, Liu and Picard [44] Polana and Nelson [45] also look pixel
level variations to analyze cyclic motions, however, they do not apply their anal-
ysis to biometric recognition. See Sec. 6 for more details.
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(a) (b)

(c) (d)

Fig. 14. Procrustes analysis applied to shape and phase configurations. In the
conventional application, a shape is represented by a vector of complex vertices.
The shape in (a), is the same as the shape (b) because each one is a translated,
scaled, and rotated version of the other. A phasor configuration is also a vector
of complex numbers. The configuration in (c) is the same as that in (d) because
each one is a rotated and scaled version of the other. Rotation is always about
the origin so translation can be ignored.

6 Other Systems

The methods described in this section are related to gait recognition, but are not
mentioned in Sec. 5 because they are either quasi gait methods, not specific to
gait, or do not do recognition. This is not to say that these methods are inferior,
but that we merely choose to classify them differently.
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6.1 Quasi Gait Recognition

Biometric recognition methods that do not rely on properties unique to a gait,
but make measurements of a person during a gait, we refer to as quasi gait
methods. One advantage to quasi gait approaches is that they may be less sen-
sitive to variation in a gait. For example, a person’s gait may vary for reasons
discussed, but their skeletal dimensions will remain constant. Examples of quasi
gait methods are discussed here.

Bobick and Johnson [35] measure a set of four parameters that describe a
static pose extracted from a gait sequence. These parameters are height, torso
length, leg length, and stride length, all of which can be estimated from a single
image (see Fig. 15). Bobick and Johnson then use these parameters as feature
vectors for recognition. The authors evaluate their method using expected con-
fusion, a number related to the f statistic. For this reason we are unable to
compare their results in the plot of Fig. 8.

Fig. 15. Static gait features measured by Bobick and Johnson [35]: height, torso
length, leg length, and stride length.

Ben-Abdelkader et al. [33] extract a subject’s height, amplitude of height
oscillations during gait, gait cadence, and stride length (see Fig. 16). They then
use these values in a feature vector for recognition. Although the features include
cadence, the method uses no timing information from the gait so we classify it
as quasi gait recognition. Using the full feature set, they achieved a recognition
rate of 49% with a sample size of 45, acquired over two days. They also look
at subsamples to determine the rate at which performance deteriorated with
sample size. The results are plotted in Fig. 8.
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Fig. 16. Gait features measured by Ben-Abdelkader et al. [33]: mean height,
amplitude of height oscillations, stride length and cadence.

It should be noted that these methods require some camera calibration and
knowledge of the distance from camera to subject. This is done to obtain mea-
surements in real-world units that can be measured with varying apparatus at
different times.

6.2 Non-recognition Systems

Methods in this section either do not do gait recognition specifically, or do not
do recognition at all.

Polana and Nelson [45] examine oscillations in the magnitude of the optical
flow in a sequence containing periodic motion. They compute a coarse resolution
(four by four) flow magnitude image at six points in the period of the motion.
From this they form a 96-element vector that is used to recognize a broad range
of periodic motions, but not individual gaits.

Liu and Picard [44] examine oscillations in pixel intensity for a gait sequence
using fast Fourier transforms (FFT). Their analysis identifies the amplitude of
the fundamental frequency of the gait. They did not use phase in their analysis,
nor did they do recognition.

Baumberg and Hogg [46] describe a method that extracts the silhouette of
a walking figure. They extend the concept by treating changes in shape with a
vibration model [24]. They did not report testing their model for recognition.

From a sequence of images, Davis and Bobick [29] compute motion energy
images (MEI) and motion-history images (MHI) that indicate where motion is
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occurring and how recently the motion occurred. They describe the shape of the
moving regions with a set of Hu moments, which they in turn use to recognize
patterns of motion, such as various aerobic exercises.

Several methods exist to match a kinematic model of a human to a sequence
of video images, i.e., estimate a subject’s pose. In general, these methods are
not gait-specific, nor are they intended to do recognition. They may be viewed
as methods for marker-less motion capture. Examples of these methods include
work by Hunter et al. [47], Rowley and Rehg [48], Wachter and Nagel [49], Wren
et al. [50], Bregler and Malik [51], and Morris and Rehg [52]. One problem with
some model-based systems is that they are computationally intensive, which
makes them either too slow or too expensive for use in a biometric system.

Bissacco et al. [53] extend results from acquisition of kinematic pose to
recognition. They use Bregler’s method [54] to extract joint angle trajectories
from a motion sequence. They then compute an auto-regressive moving-average
(ARMA) model of the joint movement which they in turn use as a feature vector
for recognition. Their system can recognize different types of gaits such as run-
ning, walking, or walking a staircase. Although they did not test it for biometric
gait recognition, this remains as a possibility.

7 Other Applications

Although the subject of this volume is biometrics, we feel it is worth noting some
of the other applications that are related to biometric gait analysis.

One area of interest in gait analysis is gait-related pathology. Gait analysis
can contribute in two important areas. The first is in diagnosis of gait-related
disorders, and the second is in monitoring of treatment. Currently, the norm is
to diagnose and monitor treatments using human observations. As in most appli-
cations of computer vision, we presume the machine can compensate for human
deficiencies. In this case, we expect the machine to give consistent diagnoses and
assessments of treatment that do not vary with the individual clinician, their
training and experience, or their attentiveness at any particular moment.

Although improvements in human athletic performance are not likely to have
an impact on quality of life for most people, athletics do have value as a source
of entertainment. To that end, there is interest in evaluating human motion to
predict athletic potential, or evaluate training.

Motion capture plays a vital role in the computer graphics and games indus-
try. Currently, marker-based systems dominate industrial motion capture, but
advances in human motion analysis are constantly improving marker-less sys-
tems. We expect that marker-less systems will eventually become the norm for
motion capture.

8 Conclusions

Interest in gait-based biometrics has lead to a stream of recent results. Fig. 8,
although not comprehensive, indicates what has been accomplished to date.
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Clearly, the performance of gait recognition systems is below what is required
for use in biometrics. When one considers that gait is best suited to recognition or
surveillance scenarios where the databases are likely to be very large, one would
expect high false alarm rates that will render a system useless. Furthermore,
tests to date do not fully consider variation in gait measurements over long time
spans, and under with different imaging conditions. Nevertheless, researchers are
making progress and understanding more about gait with each new development.
Areas that need further investigation include studies on variability with terrain,
footwear, long time spans, and other confounding factors, in an effort to find
gait features that vary only with the individual.
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Abstract. This tutorial introduces fingerprint recognition systems and their 
main components: sensing, feature extraction and matching. The basic tech-
nologies are surveyed and some state-of-the-art algorithms are discussed. Due 
to the extent of this topic it is not possible to provide here all the details and to 
cover a number of interesting issues such as classification, indexing and multi-
modal systems. Interested readers can find in [21] a complete and comprehen-
sive guide to fingerprint recognition. 

1   Introduction 

A fingerprint-based biometric system is essentially a pattern recognition system that 
recognizes a person by determining the authenticity of her fingerprint. Depending on 
the application context, a fingerprint-based biometric system may be called either a 
verification system or an identification system: 
 a verification system authenticates a person’s identity by comparing the captured 

fingerprints with her own biometric template(s) pre-stored in the system. It con-
ducts one-to-one comparison to determine whether the identity claimed by the in-
dividual is true; 

 an identification system recognizes an individual by searching the entire template 
database for a match. It conducts one-to-many comparisons to establish the iden-
tity of the individual.  

Throughout this paper the generic term recognition is used where it is not necessary 
distinguishing between verification and identification.  

The block diagrams of a fingerprint-based verification system and an identification 
system are depicted in Figure 1; user enrollment, which is common to both tasks is 
also graphically illustrated. The enrollment module is responsible for registering 
individuals in the biometric system database (system DB). During the enrollment 
phase, the fingerprint of an individual is acquired by a fingerprint scanner to produce 
a raw digital representation. A quality check is generally performed to ensure that the 
acquired sample can be reliably processed by successive stages. In order to facilitate 
matching, the raw digital representation is usually further processed by a feature ex-
                                                           
1 Portions reprinted from: D. Maltoni, D. Maio, A.K. Jain and S. Prabhakar, “Handbook of 

Fingerprint Recognition,” Springer, 2003. 2003 Springer. 
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tractor to generate a compact but expressive representation, called a template. The 
verification task is responsible for verifying individuals at the point of access. During 
the operation phase, the user’s name or PIN (Personal Identification Number) is en-
tered through a keyboard (or a keypad); the biometric reader captures the fingerprint 
of the individual to be recognized and converts it to a digital format, which is further 
processed by the feature extractor to produce a compact digital representation. The 
resulting representation is fed to the feature matcher, which compares it against the 
template of a single user (retrieved from the system DB based on the user’s PIN). 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1. Block diagrams of enrollment, verification, and identification tasks. 

In the identification task, no PIN is provided and the system compares the repre-
sentation of the input biometric against the templates of all the users in the system 
database; the output is either the identity of an enrolled user or an alert message such 
as “user not identified.” Because identification in large databases is computationally 
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expensive, classification and indexing techniques are often deployed to limit the 
number of templates that have to be matched against the input. 

It is evident from Figure 1 that the main building blocks of any fingerprint-based 
verification and identification system are: 1) sensing, 2) feature extraction, and 3) 
matching. The rest of this paper, after a brief subsection introducing biometric system 
errors, dedicates a separate section to each of the three above topics. 

1.1   Performance of a Fingerprint-Based Recognition System 

No biometric system is perfect. Although the accuracy of fingerprint-based biometric 
systems can be very high (see FVC2002 results [18]), the output is affected by two 
types of errors: mistaking biometric measurements from two different fingers to be 
from the same finger (called false match) and mistaking two biometric measurements 
from the same finger to be from two different fingers (called false non-match). Note 
that these two types of errors are also often denoted as false acceptance and false 
rejection, but the notation “false match/false non-match” is generally preferable be-
cause it is not application dependent [21]. There is a strict tradeoff between FMR 
(false match rate) and FNMR (false non-match rate) in every biometric system [8]. In 
fact, both FMR and FNMR are functions of a system accuracy threshold t. If t is de-
creased to make the system more tolerant with respect to input variations and noise, 
then FMR increases; vice versa, if t is raised to make the system more secure, then 
FNMR increases accordingly. Besides FMR and FNMR, a “compact” value is gener-
ally used to summarize the accuracy of a verification system: the Equal-Error Rate 
(EER) denotes the error rate at the threshold t for which false match rate and false 
non-match rate are identical: FMR = FNMR. 

2   Fingerprint Sensing 

Historically, in law enforcement applications, the acquisition of fingerprint images 
was performed by using the so-called “ink-technique”: the subject’s finger was spread 
with black ink and pressed against a paper card; the card was then scanned by using a 
common paper-scanner, producing the final digital image. This kind of process is 
referred to as off-line fingerprint acquisition or off-line sensing. A particular case of 
off-line sensing is the acquisition of a latent fingerprint from a crime scene. Nowa-
days, most civil and criminal AFIS accept live-scan digital images acquired by di-
rectly sensing the finger surface with an electronic fingerprint scanner. No ink is 
required in this method, and all that a subject has to do is press his finger against the 
flat surface of a live-scan scanner. To maximize compatibility between digital finger-
print images and ensure good quality of the acquired fingerprint impressions, the US 
Criminal Justice Information Services released a set of specifications that regulate the 
quality and format of both fingerprint images and FBI-compliant off-line/live-scan 
scanners (ref. to Appendix F and Appendix G of CJIS [6]). 
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2.1   Fingerprint Images 

The main parameters characterizing a digital fingerprint image are as follows. 
 Resolution: This indicates the number of dots or pixels per inch (dpi). 500 dpi is 

the minimum resolution for FBI-compliant scanners and is met by many commer-
cial devices; 250 to 300 dpi is probably the minimum resolution that allows the 
extraction algorithms to locate the minutiae in fingerprint patterns.  

 Area: The size of the rectangular area sensed by a fingerprint scanner is a funda-
mental parameter. The larger the area, the more ridges and valleys are captured 
and the more distinctive the fingerprint becomes. An area greater than or equal to 
1  1 square inches (as required by FBI specifications) permits a full plain finger-
print impression to be acquired. In most of the recent fingerprint scanners aimed 
at non-AFIS market, area is sacrificed to reduce cost and to have a smaller device 
size. Small-area scanners do not allow a whole fingerprint to be captured, and the 
users encounter difficulties in re-presenting the same portion of the finger. This 
may result in a small overlap between different acquisitions of the same finger, 
leading to false non-match errors. 

 Number of pixels: The number of pixels in a fingerprint image can be simply de-
rived by the resolution and the fingerprint area: a scanner working at r dpi over an 
area of height(h)  width(w) inch2 has rh  rw pixels. 

 Dynamic range (or depth): This denotes the number of bits used to encode the 
intensity value of each pixel. The FBI standard for pixel bit depth is 8 bits, which 
yields 256 levels of gray. 

 Geometric accuracy: This is usually specified by the maximum geometric distor-
tion introduced by the acquisition device, and expressed as a percentage with re-
spect to x and y directions. 

 Image quality: It is not easy to precisely define the quality of a fingerprint image, 
and it is even more difficult to decouple the fingerprint image quality from the in-
trinsic finger quality or status. In fact, when the ridge prominence is very low (es-
pecially for manual workers and elderly people), when the fingers are too moist or 
too dry, or when they are incorrectly presented, most of the scanners produce poor 
quality images (see Figure 2). 

2.2   Off-line Acquisition  

 Although the first fingerprint scanners were introduced more than 30 years ago, 
nowadays, the ink-technique [17] is still used in law enforcement applications. 
Live-scan acquisition techniques are now being employed in AFIS. As a result, 
the databases built by law enforcement agencies over a period of time contain 
both the fingerprint images acquired by off-line scanners and live-scan scanners 
and the AFIS matching algorithms are expected to interoperate on these different 
types of images. 
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Fig. 2. Examples of fingerprint images acquired with an optical scanner: a) a good quality 
fingerprint; b) a fingerprint left by a dry finger; c) a fingerprint left by a wet finger, d) an in-
trinsically bad fingerprint. 

In the ink-technique the finger skin is first spread with black ink and then pressed 
against a paper card; the card is then converted into digital form by means of a paper-
scanner or by using a high-quality CCD camera (see Figure 3). The default resolution 
is 500 dpi. If not executed with care, the ink-technique produces images including 
regions with missing information, due to excessive inkiness or due to ink deficiency. 
On the other hand, an advantage of this technique is the possibility of producing 
rolled impressions (by rolling “nail-to-nail” a finger against the card, thus producing 
an unwrapped representation of the whole pattern) which carries more information 
with respect to the flat (or dab) impressions obtained by simply pressing the finger 
against the flat surface of a scanner. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Rolled fingerprint images acquired off-line with the ink technique. 

a) b) c) d) 
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2.3   Live-Scan Sensing  

The most important part of a fingerprint scanner is the sensor (or sensing element), 
which is the component where the fingerprint image is formed. Almost all the exist-
ing sensors belong to one of the three families: optical, solid-state, and ultrasound. 

 Optical sensors. Frustrated Total Internal Reflection (FTIR) is the oldest and most 
used live-scan acquisition technique today. The finger touches the top side of a 
glass prism, but while the ridges enter in contact with the prism surface, the val-
leys remain at a certain distance (see Figure 4.a); the left side of the prism is illu-
minated through a diffused light. The light entering the prism is reflected at the 
valleys, and absorbed at the ridges. The lack of reflection allows the ridges to be 
discriminated from the valleys. The light rays exit from the right side of the prism 
and are focused through a lens onto a CCD or CMOS image sensor. In spite of a 
generally better image quality and the possibility of larger sensing areas, FTIR-
based devices cannot be miniaturized unlike other techniques: optical fibers, elec-
tro-optical devices, and solid-state devices. 

 Solid-state sensors. Solid-state sensors (also known as silicon sensors) became 
commercially available in the middle 1990s. All silicon-based sensors consist of 
an array of pixels, each pixel being a tiny sensor itself. The user directly touches 
the surface of the silicon: neither optical components nor external CCD/CMOS 
image sensors are needed. Four main effects have been proposed to convert the 
physical information into electrical signals: capacitive, thermal, electric field, and 
piezoelectric. A capacitive sensor is a two-dimensional array of micro-capacitor 
plates embedded in a chip (see Figure 4.b). The other plate of each micro-
capacitor is the finger skin itself. Small electrical charges are created between the 
surface of the finger and each of the silicon plates when a finger is placed on the 
chip. The magnitude of these electrical charges depends on the distance between 
the fingerprint surface and the capacitance plates. 

 Ultrasound sensors. Ultrasound sensing may be viewed as a kind of echography. 
Characteristic of sound waves is the ability to penetrate materials, giving a partial 
echo at each impedance change. An ultrasound sensor is based on sending acous-
tic signals toward the fingertip and capturing the echo signal (see Figure 4.c). The 
echo signal is used to compute the range image of the fingerprint and, subse-
quently, the ridge structure itself. Good quality images may be obtained by this 
technology. However, the scanner is large with mechanical parts and quite expen-
sive. Moreover, it takes a few seconds to acquire an image. Hence, this technol-
ogy is not yet mature enough for large-scale production. 

 
Table 1 lists some commercial scanners designed for the non-AFIS markets, whose 

cost is less than $200 US. Except for ultrasound scanners, which are not ready for 
mass-market applications yet, Table 1 includes at least one scanner for each technol-
ogy. Examples of the same fingerprint (from a good-quality finger, a dry finger, a wet 
finger, and a poor quality finger, respectively) as acquired by using many of the scan-
ners listed in Table 1 are reported in [21]. 
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Fig. 4. a) FTIR-based optical fingerprint sensing; b) capacitive sensing; c) the basic principle 
of the ultrasound technique. 

3   Feature Extraction 

A fingerprint is the reproduction of a fingertip epidermis, produced when a finger is 
pressed against a smooth surface. The most evident structural characteristic of a fin-
gerprint is a pattern of interleaved ridges and valleys; in a fingerprint image, ridges 
(also called ridge lines) are dark whereas valleys are bright (see Figure 5.a). Ridges 
and valleys often run in parallel; sometimes they bifurcate and sometimes they termi-
nate. 
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Table 1. Some commercial scanners, grouped by technology. The table reports for each scan-
ner, the resolution, the sensing area, and the number of pixels. 

 
 Technology Company Model Dpi Area (h w) Pixels 

FTIR Biometrika 
www.biometrika.it/eng/ FX2000 569 0.98" 0.52" 560 296 

(165,760) 

FTIR Digital Persona 
www.digitalpersona.com UareU2000 440 0.67" 0.47" 316 228 

(72,048) 
FTIR 

(sweep) 
Kinetic Sciences 
www.kinetic.bc.ca K-1000 up to

1000 0.002" 0.6" 2 900 
(H 900) 

FTIR Secugen 
www.secugen.com Hamster 500 0.64" 0.54" 320 268 

(85,760) 

Sheet prism Identix 
www.identix.com DFR 200 380 0.67" 0.67" 256 256 

(65,535) 

Fiber optic Delsy 
www.delsy.com 

CMOS 
module 508 0.71" 0.47" 360 240 

(86,400) 

O
pt

ic
al

 

Electro-
optical 

Ethentica 
www.ethentica.com 

TactilSense 
T-FPM 403 0.76" 0.56" 306 226 

(69,156) 
Capacitive 

(sweep) 
Fujitsu 

www.fme.fujitsu.com MBF300 500 0.06" 0.51" 32 256 
(H 256) 

Capacitive Infineon 
www.infineon.com FingerTip 513 0.56" 0.44" 288 224 

(64,512) 

Capacitive ST-Microelectronics 
us.st.com 

TouchChip 
TCS1AD 508 0.71" 0.50" 360 256 

(92,160) 

Capacitive Veridicom 
www.veridicom.com FPS110 500 0.60" 0.60" 300 300 

(90,000) 
Thermal 
(sweep) 

Atmel 
www.atmel.com 

FingerChip
AT77C101B 500 0.02" 0.55" 8 280 

(H 280) 

Electric field Authentec 
www.authentec.com AES4000 250 0.38" 0.38" 96 96 

(9,216) 

So
lid

-s
ta

te
 

Piezoelectric BMF 
www.bm-f.com BLP-100 406 0.92" "0.63 384 256 

(98,304) 
 

When analyzed at the global level, the fingerprint pattern exhibits one or more re-
gions where the ridge lines assume distinctive shapes (characterized by high curva-
ture, frequent termination, etc.). These regions (called singularities or singular re-
gions) may be classified into three typologies: loop, delta, and whorl (see Figure 5.b). 
Singular regions belonging to loop, delta, and whorl types are typically characterized 
by , , and O shapes, respectively. Several fingerprint matching algorithms pre-
align fingerprint images according to a landmark or a center point, called the core. 
The core point corresponds to the center of the north most loop type singularity. For 
fingerprints that do not contain loop or whorl singularities (e.g., those belonging to 
the Arch class in Figure 6), it is difficult to define the core. In these cases, the core is 
usually associated with the point of maximum ridge line curvature. Unfortunately, 
due to the high variability of fingerprint patterns, it is difficult to reliably locate a 
registration (core) point in all the fingerprint images. 
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Fig. 5. a) Ridges and valleys on a fingerprint image; b) singular regions (white boxes) and core 
points (small circles) in fingerprint images. 

 
Singular regions are commonly used for fingerprint classification [21] (see Figure 

6), that is, assigning a fingerprint to a class among a set of distinct classes, with the 
aim of simplifying search and retrieval. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. One fingerprint from each of the five major classes. 

 
At the local level, other important features, called minutiae can be found in the 

fingerprint patterns. Minutia refers to various ways that the ridges can be discontinu-
ous. For example, a ridge can suddenly come to an end (termination), or can divide 
into two ridges (bifurcation). Although several types of minutiae can be considered, 
usually only a coarse classification is adopted to deal with the practical difficulty in 
automatically discerning the different types with high accuracy. The FBI minutiae-
coordinate model [25] considers only terminations and bifurcations: each minutia is 
denoted by its class, the x- and y-coordinates and the angle between the tangent to the 
ridge line at the minutia position and the horizontal axis (Figures 7). 
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Fig. 7. a) A termination minutia: [x0,y0] are the minutia coordinates;  is the angle that the 
minutia tangent forms with the horizontal axis; b) a bifurcation minutia:  is now defined by 
means of the termination minutia corresponding to the original bifurcation that exists in the 
negative image; c) termination (white) and bifurcation (gray) minutiae in a sample fingerprint. 

Although some fingerprint matching techniques directly compare images through 
correlation-based methods, the gray-scale image intensities are known to be an unsta-
ble representation. Most of the fingerprint recognition and classification algorithms 
require a feature extraction stage for identifying salient features. The features ex-
tracted from fingerprint images often have a direct physical counterpart (e.g., singu-
larities or minutiae), but sometimes they are not directly related to any physical traits 
(e.g., local orientation image or filter responses). Features may be used either for 
matching or their computation may serve as an intermediate step for the derivation of 
other features. For example, some preprocessing and enhancement steps are often 
performed to simplify the task of minutiae extraction. Figure 9 provides a graphical 
representation of the main feature extraction steps and their interrelations. 

3.1   Local Ridge Orientation and Frequency 

The local ridge orientation at [x,y] is the angle xy that the fingerprint ridges, crossing 
through an arbitrary small neighborhood centered at [x,y], form with the horizontal 
axis (Figure 8).  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. A fingerprint image faded into the corresponding orientation image computed over a 
square-meshed grid. Each element denotes the local orientation of the fingerprint ridges; the 
element length is proportional to its reliability. 
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Fig. 9. Graphical representation of fingerprint feature extraction steps and their interrelations. 
Computation of ridge local orientation and frequency are usually performed at the very begin-
ning since they are useful for most of the other processing steps such as enhancement, singular-
ity detection, segmentation and minutiae extraction.  

Fingerprint image 

Local orientation 
(directional image) 

Local frequency 
(frequency image) 

Segmentation 
(isolation from the background) 

Singularity detection 
(loop, delta  core) 

Enhancement 
(improved image) 

Minutiae extraction 
(binarization or gray-scale) 



54           D. Maltoni 

The simplest and most natural approach for extracting local ridge orientation is 
based on computation of gradient phase angles. This method, although simple and 
efficient, has some drawbacks. First, using the classical convolution masks to deter-
mine x and y components of the gradient, and computing ij as the arctangent of the 

y/ x ratio, presents problems due to the non-linearity and discontinuity around 90°. 
Second, a single orientation estimate reflects the ridge valley orientation at too fine a 
scale and is generally very sensitive to the noise in the fingerprint image. 

Robust computation, based on local averaging of gradient estimates, have been 
proposed by Kass and Witkin [13], Donahue and Rokhlin [7], Ratha, Chen, and Jain 
[22], and Bazen and Gerez [3]. 

The local ridge frequency (or density) fxy at point [x,y] is the inverse of the number 
of ridges per unit length along a hypothetical segment centered at [x,y] and orthogo-
nal to the local ridge orientation xy. The local ridge frequency varies across different 
fingers, and may also noticeably vary across different regions in the same fingerprint 
(see Figure 10). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Two fingerprint images and the corresponding frequency image computed with the 
method proposed by Maio and Maltoni [20]. Light blocks denote higher frequencies. It is quite 
evident that significant changes may characterize different fingerprint regions and different 
average frequencies may result from different fingers. 

Hong, Wan, and Jain [10] estimate local ridge frequency by counting the average 
number of pixels between two consecutive peaks of gray-levels along the direction 
normal to the local ridge orientation. In the method proposed by Maio and Maltoni 
[20], the ridge pattern is locally modeled as a sinusoidal-shaped surface, and the 
variation theorem is exploited to estimate the unknown frequency. Kovacs-Vajna, 
Rovatti, and Frazzoni [15] proposed a two-step procedure: first, the average ridge 
distance is estimated in the Fourier domain for each 64  64 sub-block of the image 
that is of sufficient quality and then this information is propagated, according to a 
diffusion equation, to the remaining regions. 
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3.2   Segmentation 

Separating the fingerprint area from the background is useful to avoid extraction of 
features in noisy areas of the fingerprint and background. Because fingerprint images 
are striated patterns, using a global or local thresholding technique [9] does not allow 
the fingerprint area to be effectively isolated. In fact, what really discriminates fore-
ground and background is not the average image intensities but the presence of a 
striped and oriented pattern in the foreground and of an isotropic pattern (i.e., which 
does not have a dominant orientation) in the background. If the image background 
were always uniform and lighter than the fingerprint area, a simple approach based on 
local intensity could be effective for discriminating foreground and background; in 
practice, the presence of noise (such as that produced by dust and grease on the sur-
face of live-scan fingerprint scanners) requires more robust segmentation techniques 
[22][19][2]. 

3.3   Singularity Detection 

Most of the approaches proposed in the literature for singularity detection operate on 
the fingerprint orientation image. The best-known method is based on Poincaré index 
(Kawagoe and Tojo [14]).  

Let C be a closed path defined as an ordered sequence of some elements of the fin-
gerprint orientation image2 such that [i,j] is an internal point (see Figure 11), then the 
Poincaré index PG,C(i,j) at [i,j] is computed by algebraically summing the orientation 
differences between adjacent elements of C. Summing orientation differences re-
quires a direction (among the two possible) to be associated at each orientation. A 
solution to this problem is to randomly select the direction of the first element and 
assign the direction closest to that of the previous element to each successive element. 

 

 

 

 

 

 

 
 

Fig. 11. Examples of computation of the Poincaré index in the 8-neighborhood of points be-
longing (from the left to the right) to a whorl, loop, and delta singularity, respectively. 

                                                           
2 The fingerprint orientation image is a matrix whose elements encode the local orientation of 

the fingerprint ridges. 

PG,C(i,j) = 360° PG,C(i,j) = 180° PG,C(i,j) = -180° 
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It is well known and can be easily shown that, on closed curves, the Poincaré index 
assumes only one of the discrete values: 0°, 180 , and 360 . In the case of finger-
print singularities: 

region.singular   typedelta a  tobelongs ],[ if
regionsingular   typeloop a  tobelongs ],[ if

regionsingular   type whorla  tobelongs ],[ if
regionsingular any   tobelongnot  does ],[ if

    

180-
180
360

0

ji
ji
ji
ji

j,iP C,G  

An example of singularities detected by the above method is shown in Figure 12. 
 
 

 
 

 
 
 

 
 
 
 
 

Fig. 12. Singularity detection by using the Poincaré index method. The elements whose Poin-
caré index is 180  (loop) or -180  (delta) are enclosed by small boxes. 

A number of alternative approaches have been proposed for singularity detection; 
they can be coarsely classified in: 1) methods based on local characteristics of the 
orientation image, 2) partitioning-based methods, 3) core detection and fingerprint 
registration approaches. For further details refer to [21].  

3.4   Enhancement and Binarization 

The performance of minutiae extraction algorithms and other fingerprint recognition 
techniques relies heavily on the quality of the input fingerprint images. In an ideal 
fingerprint image, ridges and valleys alternate and flow in a locally constant direction. 
In such situations, the ridges can be easily detected and minutiae can be precisely 
located in the image. However, in practice, due to skin conditions (e.g., wet or dry, 
cuts, and bruises), sensor noise, incorrect finger pressure, and inherently low-quality 
fingers (e.g., elderly people, manual workers), a significant percentage of fingerprint 
images (approximately 10%) is of poor quality like those in Figures 2.b, c and d. 

The goal of an enhancement algorithm is to improve the clarity of the ridge struc-
tures in the recoverable regions and mark the unrecoverable regions as too noisy for 
further processing. Usually, the input of the enhancement algorithm is a gray-scale 
image. The output may either be a gray-scale or a binary image, depending on the 
algorithm. 

loop 

delta 

loop 

loop 
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General-purpose image enhancement techniques do not produce satisfying and de-
finitive results for fingerprint image enhancement. The most widely used technique 
for fingerprint image enhancement is based on contextual filters. In conventional 
image filtering, only a single filter is used for convolution throughout the image. In 
contextual filtering, the filter characteristics change according to the local context. 
Usually, a set of filters is pre-computed and one of them is selected for each image 
region. In fingerprint enhancement, the context is often defined by the local ridge 
orientation and local ridge frequency. In fact, the sinusoidal-shaped wave of ridges 
and valleys is mainly defined by a local orientation and frequency that varies slowly 
across the fingerprint area. An appropriate filter that is tuned to the local ridge fre-
quency and orientation can efficiently remove the undesired noise and preserve the 
true ridge and valley structure. 

Hong, Wan, and Jain [10] proposed an effective method based on Gabor filters. 
Gabor filters have both frequency-selective and orientation-selective properties and 
have optimal joint resolution in both spatial and frequency domains. A graphical 
representation of a bank of 24 filters and an example of their applications is shown in 
Figure 13. Further information on the huge number of existing fingerprint enhance-
ment and binarization techniques can be found in [21]. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 

Fig. 13. A graphical representation of a bank of 24 Gabor filters and their application to the 
enhancement of a noisy image.  
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3.5   Minutiae Extraction 

Although rather different from one another, most of the proposed methods require the 
fingerprint gray-scale image to be converted into a binary image. Some binarization 
processes greatly benefit from an a priori enhancement; on the other hand, some en-
hancement algorithms directly produce a binary output, and therefore the distinction 
between enhancement and binarization is often faded. The binary images obtained by 
the binarization process are usually submitted to a thinning stage [16] which allows 
for the ridge line thickness to be reduced to one pixel. Finally, a simple image scan 
allows the detection of pixels that correspond to minutiae through the pixel-wise 
computation of crossing number3 (see Figure 14).  
 
 
 
     

 
 
 
 
 
3for an 
 
 

Fig. 14. a) A fingerprint gray-scale image; b) the image obtained after enhancement and binari-
zation; c) the image obtained after thinning; d) termination and bifurcation minutiae detected 
through the pixel-wise computation of the crossing number. 

Some authors have proposed minutiae extraction approaches that work directly on 
the gray-scale images without binarization and thinning. This choice is motivated by 
these considerations: 
 a significant amount of information may be lost during the binarization process; 
 binarization and thinning are time consuming; thinning may introduce a large 

number of spurious minutiae; 
 in the absence of an a priori enhancement step, most of the binarization techniques 

do not provide satisfactory results when applied to low-quality images.  
Maio and Maltoni [19] proposed a direct gray-scale minutiae extraction technique, 
whose basic idea is to track the ridge lines in the gray-scale image, by “sailing” ac-
cording to the local orientation of the ridge pattern. The ridge line extraction algo-
rithm attempts to locate, at each step, a local maximum relative to a section orthogo-
nal to the ridge direction. By connecting the consecutive maxima, a polygonal ap-

                                                           
3 The crossing number of a pixel in a binary image is defined as half the sum of the differences 

between pairs of adjacent pixels in the 8-neighborhood [21]; its value is 1 for a termination 
minutia, 2 for an intermediate ridge pixel, and  3 for a bifurcation or a more complex minu-
tia. 

b)
 

a) c) d) 
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proximation of the ridge line can be obtained. See Figure 15 for an example of direct 
gray-scale minutiae extraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Minutiae detection on a sample fingerprint by using the Maio and Maltoni [19] 
method. 

A post-processing stage (called minutiae filtering) is often useful in removing the 
spurious minutiae detected in highly corrupted regions or introduced by previous 
processing steps (e.g., thinning). Two main post-processing types have been pro-
posed: structural post-processing, and minutiae filtering in the gray-scale domain 
[21]. 

4   Matching 

Matching high quality fingerprints with small intra-class variations is not difficult and 
every reasonable algorithm can do it. The real challenge is matching samples (some-
times very poor quality) affected by: 
 High displacement and/or rotation: finger displacement and rotation often cause 

part of the fingerprint area to fall outside the sensor’s “field of view,” resulting in 
a smaller overlap between the template and the input fingerprints. This problem is 
particularly serious for small-area sensors. A finger displacement of just 2 mm 
(imperceptible to the user) results in a translation of about 40 pixels in a finger-
print image scanned at 500 dpi. 

 Non-linear distortion: the act of sensing maps the three-dimensional shape of a 
finger onto the two-dimensional surface of the sensor. This results in a non-linear 
distortion in successive acquisitions of the same finger due to skin plasticity. 

 Different pressure and skin condition: the ridge structure of a finger would be 
accurately captured if ridges of the part of the finger being imaged were in uni-
form contact with the sensor surface. However, finger pressure, dryness of the 
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skin, skin disease, sweat, dirt, grease, and humidity in the air all confound the 
situation, resulting in a non-uniform contact. 

 Feature extraction errors: the feature extraction algorithms are imperfect and 
often introduce measurement errors. For example in low-quality fingerprint im-
ages, the minutiae extraction process may introduce a large number of spurious 
minutiae and may not be able to detect all the true minutiae. 

 
The pairs of images in Figure 16.a visually show the high variability (large intra-

class variations) that can characterize two different impressions of the same finger. 
On the other hand, as evident from Figure 16.b, fingerprint images from different 
fingers may sometimes appear quite similar (small inter-class variations), especially 
in terms of global structure (position of the singularities, local ridge orientation, etc.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. a) each row shows a pair of impressions of the same finger, taken from the FVC2002 
DB1, which were falsely non-matched by most of the algorithms submitted to FVC2002 [18]. 
The main cause of difficulty is a very small overlap in the first row, and very different skin 
conditions in the second row; b) each row shows a pair of impressions of different fingers, 
taken from the FVC2002 databases which were falsely matched by some of the algorithms 
submitted to FVC2002. 

The large number of existing approaches to fingerprint matching can be coarsely 
classified into three families. 
 Correlation-based matching: two fingerprint images are superimposed and the 

correlation between corresponding pixels is computed for different alignments 
(e.g., various displacements and rotations). 

 Minutiae-based matching: minutiae are extracted from the two fingerprints and 
stored as sets of points in the two-dimensional plane. Minutiae-based matching 
essentially consists of finding the alignment between the template and the input 
minutiae sets that results in the maximum number of minutiae pairings. 

 Ridge feature-based matching: the approaches belonging to this family compare 
fingerprints in term of features extracted from the ridge pattern. 

b)a) 
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In the rest of this section the representation of the fingerprint acquired during enroll-
ment is denoted to as the template (T) and the representation of the fingerprint to be 
matched as the input (I). In case no feature extraction is performed, the fingerprint 
representation coincides with the grayscale fingerprint image itself. 

4.1   Correlation-Based Techniques  

Let I( x, y, ) represent a rotation of the input image I by an angle  around the origin 
(usually the image center) and shifted by x, y pixels in directions x and y, respec-
tively; then the similarity between the two fingerprint images T and I can be meas-
ured as 

,y,x

,y,x
,CC,S ITIT max    . (1) 

where ITIT T,CC is the cross-correlation between T and I. The cross-correlation 
[9] is well known measure of image similarity and the maximization in (1) allows to 
find the optimal registration. 

Anyway, the direct application of Equation (1) rarely leads to acceptable results 
mainly due to the following problems. 
 Non-linear distortion makes impressions of the same finger significantly different 

in terms of global structure; in particular, the elastic distortion does not signifi-
cantly alter the fingerprint pattern locally, but since the effects of distortion get in-
tegrated in image space, two global fingerprint patterns cannot be reliably corre-
lated. The use of local or block-wise correlation techniques can help to deal with 
this problem [4]. 

 Skin condition and finger pressure cause image brightness, contrast, and ridge 
thickness to vary significantly across different impressions. The use of more so-
phisticated correlation measures may compensate for contrast and brightness 
variations and applying a proper combination of enhancement, binarization, and 
thinning steps (performed on both T and I) may limit the ridge thickness problem. 

 A direct application of Equation (1) is computationally very expensive. For exam-
ple, consider two 400  400 pixel images: if x, y were both sampled with a one-
pixel step in the range [ 200,200], and  with step 1  in the range [ 30 ,30°] it 
would be necessary to compute 401  401  61 cross-correlations, resulting in 
about 1569 billion multiplications and summations (i.e., more than one hour on a 
500 MIPS computer). Local correlation and correlation in the Fourier domain can 
improve efficiency. 

4.2   Minutiae-Based Methods  

This is the most popular and widely used technique, being the basis of the fingerprint 
comparison made by fingerprint examiners. Minutiae are extracted from the two fin-
gerprints and stored as sets of points in the two-dimensional plane. Most common 
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minutiae matching algorithms consider each minutia as a triplet m = {x,y, } that indi-
cates the x,y minutia location coordinates and the minutia angle : 

,n..j,,y,x,,...,,
m..i,,y,x,,...,,

jjjjn

iiiim

 1           
1          

21

21

mmmmI
mmmmT

 

where m and n denote the number of minutiae in T and I, respectively. 
A minutia jm in I and a minutia im  in T are considered “matching,” if the spatial 

distance (sd) between them is smaller than a given tolerance r0 and the direction dif-
ference (dd) between them is smaller than an angular tolerance 0: 

,ijijij ryyxx,sd 0
22    mm         and (2) 

0       360  min ijijij ,,dd mm . (3) 

The tolerance boxes (or hyper-spheres) defined by r0 and 0 are necessary to compen-
sate for the unavoidable errors made by feature extraction algorithms and to account 
for the small plastic distortions that cause the minutiae positions to change. 

Aligning the two fingerprints is a mandatory step in order to maximize the number 
of matching minutiae. Correctly aligning two fingerprints certainly requires dis-
placement (in x and y) and rotation ( ) to be recovered, and likely involves other 
geometrical transformations like scale and specific distortion-tolerant geometrical 
transformations. Let map(.) be the function that maps a minutia jm  (from I) into 

jm  according to a given geometrical transformation; for example, by considering a 

displacement of [ x, y] and a counterclockwise rotation  around the origin4: 
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Let mm(.) be an indicator function that returns 1 in the case where the minutiae jm  

and im  match according to Equations (2) and (3): 
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Then, the matching problem can be formulated as 
m

i
iiP,y,x

P,,y,x
,mapmm

1

  maximize mm , (4) 

where P(i) is an unknown function that determines the pairing between I and T minu-
tiae; in particular, each minutia has either exactly one mate in the other fingerprint or 
has no mate at all: 

                                                           
4 The origin is usually selected as the minutiae centroid (i.e., the average point).  
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1. P(i) = j indicates that the mate of the mi in T is the minutia jm  in I; 

2. P(i) = null indicates that minutia mi in T has no mate in I; 
3. a minutia jm  in I, such that  i = 1..m, P(i)  j has no mate in T; 

4.  i = 1..m, k = 1..m, i  k  P(i)  P(k) or P(i) = P(k) = null (this requires 
that each minutia in I is associated with a maximum of one minutia in T). 

Note that, in general, P(i) = j does not necessarily mean that minutiae jm  and im  

match in the sense of Equations (2) and (3) but only that they are the most likely pair 
under the current transformation. 

Solving the minutiae matching problem (expression (4)) is trivial if the correct 
alignment ( x, y,  ) or the function P (minutiae correspondence) is known. Unfor-
tunately, in practice, neither the alignment parameters nor the correspondence func-
tion P are known and, therefore, solving the matching problem is very hard. In the 
pattern recognition literature the minutiae matching problem has been generally ad-
dressed as a point pattern matching problem [21]. Hough transform-based approaches 
are the most commonly used techniques for global minutiae matching [23] [5]; an 
example is shown in Figure 17. The Hough transform techniques [1] converts point 
pattern matching to the problem of detecting peaks in the Hough space of transforma-
tion parameters. It discretizes the parameter space ( x, y, ) and accumulates evi-
dence in the discretized space by deriving transformation parameters that relate two 
sets of points using a substructure of the feature matching technique. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Minutiae matching by the Chang et al. approach [5]. Figures a) and b) show the minu-
tiae extracted from the template and the input fingerprint, respectively; c) the minutiae are 
coarsely superimposed and the principal pair is marked with an ellipse; d) each circle denotes a 
pair of minutiae as mated by the algorithm. 

a) b) 

c) d)
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Equation 4 attempts to solve the minutiae matching problem globally (global mi-
nutiae matching). Some authors proposed “local minutiae matching” techniques that  
consists of comparing two fingerprints according to local minutiae structures (Jiang 
and Yau [12], Ratha et al. [24]); local structures are characterized by attributes that 
are invariant with respect to global transformation (e.g., translation, rotation, etc.) and 
therefore are suitable for matching without any a priori global alignment. Matching 
fingerprints based only on local minutiae arrangements relaxes global spatial relation-
ships which are highly distinctive and therefore reduce the amount of information 
available for discriminating fingerprints. Global versus local matching is a tradeoff 
among simplicity, low computational complexity, and high distortion-tolerance (local 
matching), and high distinctiveness on the other hand (global matching). 

In [12] local structures are formed by a central minutia and its two nearest-
neighbor minutiae; the feature vector vi associated with the minutia mi, whose nearest 
neighbors are minutiae mj (the closest to mi) and mk (the second closest) is vi = [dij, 
dik, ij, ik, ij, ik, nij, nik, ti, tj, tk], where dab is the distance between minutiae ma and 
mb, ab is the direction difference between the angles a and b of ma and mb, ab is 
the direction difference between the angle a of ma and the direction of the edge con-
necting ma to mb, nab is the ridge count between ma and mb, and ta is the minutia type 
of ma (Figure 18).  

 

 
 
 

 
 
 
 

 
 
 
 
 

Fig. 18. Features of the local structures used by Jiang and Yau [12]. 

 
Local minutiae matching is performed by computing, for each pair of minutiae im  
and jm , i = 1..m,  j = 1..n, a weighted distance between their vectors iv  and jv . 
The best matching pair is then selected and used for registering the two fingerprints. 
In the second stage (consolidation), the feature vectors of the remaining aligned pairs 
are matched and a final score is computed by taking into account the different contri-
butions (first stage and second stage). 
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4.3   Ridge Feature-Based Techniques  

Three main reasons induce designers of fingerprint recognition techniques to search 
for other fingerprint distinguishing features, beyond minutiae: 1) reliably extracting 
minutiae from poor quality fingerprints is very difficult; 2) minutiae extraction is time 
consuming; 3) additional features may be used in conjunction with minutiae (and not 
as an alternative) to increase system accuracy and robustness. The more commonly 
used alternative features are:  

1. size of the fingerprint and shape of the external fingerprint silhouette; 
2. number, type, and position of singularities; 
3. spatial relationship and geometrical attributes of the ridge lines;  
4. shape features; 
5. global and local texture information; 
6. sweat pores; 
7. fractal features. 

Jain et al. [11] proposed a local texture analysis technique where the fingerprint 
area of interest is tessellated with respect to the core point (see Figure 19).  

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. System diagram of Jain et al.’s FingerCode approach [11]. 
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A feature vector is composed of an ordered enumeration of the features extracted 
from the local information contained in each sector specified by the tessellation. Thus 
the feature elements capture the local texture information and the ordered enumera-
tion of the tessellation captures the global relationship among the local contributions. 
The local texture information in each sector is decomposed into separate channels by 
using a Gabor filterbank. Each fingerprint is represented by a 80  8 = 640 fixed-size 
feature vector, called the FingerCode. The generic element Vij of the vector (i = 1..80 
is the cell index,  j = 1..8 is the filter index) denotes the energy revealed by the filter j 
in cell i, and is computed as the average absolute deviation (AAD) from the mean of 
the responses of the filter j over all the pixels of the cell i. Matching two fingerprints 
is then translated into matching their respective FingerCodes, which is simply per-
formed by computing the Euclidean distance between two FingerCodes. 

5   Conclusions 

Recent developments in fingerprint scanners have focused on reducing both their cost 
and size. Although lower cost and size are essential to enable a wide deployment of 
the technology in civilian applications, some of these developments have been made 
at the expense of fingerprint image quality (e.g., dpi resolution, etc.). It is very likely 
that while the market will continue to drive down scanner prices, it will also require 
higher-quality products at the same time. Manufacturers will continue to innovate 
low-cost small-size scanner designs, but they will also take care that their products 
deliver high quality-images of large areas of the finger. 

Robust extraction of fingerprint feature remains a challenging problem, especially 
in poor quality fingerprints. Development of fingerprint-specific image processing 
techniques is necessary in order to solve some of the outstanding problems. For ex-
ample, explicitly measuring (and restoring or masking) noise such as creases, cuts, 
dryness, smudginess, and the like will be helpful in reducing feature extraction errors. 
Algorithms that can extract discriminative non-minutiae-based features in fingerprint 
images and integrate them with the available features and matching strategies will 
improve fingerprint matching accuracy. New (perhaps, model-based) methods for 
computation (or restoration) of the orientation image in very low-quality images is 
also desirable to reduce feature extraction errors. 

Most of the fingerprint matching approaches introduced in the last four decades are 
minutiae-based, but recently correlation-based techniques are receiving renewed 
interest. New texture-based methods have been proposed and the integration of ap-
proaches relying on different features seems to be the most promising way to signifi-
cantly improve the accuracy of fingerprint recognition systems. 
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Abstract. Biometric recognition has attracted the attention of scientists, 
investors, government agencies as well as the media for the great potential in 
many application domains. It turns out that there are still a number of intrinsic 
drawbacks in all biometric techniques. In this paper we postulate the need for a 
proper data representation which may simplify and augment the discrimination 
among different instances or biometric samples of different subjects. 
Considering the design of many natural systems it turns out that spiral (circular) 
topologies are the best suited to economically store and process data. Among 
the many developed techniques for biometric recognition, face analysis seems 
to be the most promising and interesting modality. The ability of the human 
visual system of analyzing unknown faces, is an example of the amount of 
information which can be extracted from face images. Nonetheless, there are 
still many open problems which need to be “faced” as well. The choice of 
optimal resolution of the face within the image, face registration and facial 
feature extraction are still open issues. This not only requires to devise new 
algorithms but to determine the real potential and limitations of existing 
techniques. In this paper two different methods for face matching are presented, 
based on the same similarity measure but on different image representations. 
The methods are tested with conventional and also new databases, obtained 
from real subjects in real working environments. 

1   Introduction 

Every living creature depends on the ability to perceive the outside world. In turn, the 
correct perception requires to consistently organize the acquired sensory data, either 
visual, tactile, olfactory etc. Organized “perceptual patterns” allow humans to 
perform a variety of tasks, all based on the recognition of precise data configurations. 

For example, the first and primary perceptual task of a living creature is the 
recognition of his/her mother. This is firstly based on simple recording and matching 
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of olfactory data, but quickly develops adding information based on her voice and 
view. In the case of humans, as the child grows, quickly develops a surprising ability 
to analyze faces. The neural plasticity of infants allows to generalize the “mom 
recognition” task to learn how to recognize many different faces. 

Not only this, in fact, face analysis in humans is not limited to identity verification: 
this is Jack and this is Tom. There is a considerable number of inference processes, 
based on face image analysis, devoted to understand other aspects of the person in 
front. For example, the age, race, mood, and many other “signals” which may be 
given and perceived by particular motions of the eyes and the face mussels. 

Reverting this human capability into the design of an information technology 
system is certainly a formidable task. Current research in face recognition and also 
gesture recognition is trying to “climb the hill” toward this direction [1-14]. 
Many difficulties arise from the enormous dimensionality of the search space when 
dealing with natural images (both for the number of elements in a typical data set and 
for the number of samples for each data element). These findings enforce the need to 
devise simple and modular processing elements, which are functionally related to the 
selective extraction of collective information from face image streams. 

2   Neurophysiological Evidence 

Neural systems that mediate face recognition appear to exist very early in life. In 
normal infancy, the face holds particular significance and provides nonverbal 
information important for communication and survival [15]. Face recognition ability 
is present during the first 6 months of life, while a visual preference for faces and the 
capacity for very rapid face recognition are present at birth [16,17]. By 4 months, 
infants recognize upright faces better than upside down faces, and at 6 months, 
infants show differential event-related brain potentials to familiar versus unfamiliar 
faces [18,19]. 

Much is known about the neural systems that subserve face recognition in adult 
humans and primates. 
In the monkey brain over 30 functional areas have been defined clearly devoted to 
visual information processing. Face-selective neurons have been found in the inferior 
temporal areas (TEa and TEm), the superior temporal sensory area, the amygdala, the 
ventral striatum (which receives input from the amygdala) and the inferior convexity 
[20]. 

Using functional magnetic resonance imaging (fMRI), an area in the fusiform 
gyrus was found significantly activated when the subjects viewed faces [21-23]. 
Within this “general face activation area” specific regions of interest have been 
reported responding significantly more strongly to passive viewing of: 

o intact than scrambled two-tone faces; 

o full front-view face photos than front-view photos of houses, and three-quarter-
view face photos (with hair concealed) than photos of human hands; 
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o a region also responded more strongly during a consecutive matching task 
performed on three-quarter-view faces versus hands. 

The reported data allowed to reject alternative accounts of the function of the 
fusiform face area (area “FF”) that appeal to visual attention, subordinate-level 
classification, or general processing of any animate or human forms, demonstrating 
that this region is selectively involved in the perception of faces. 

A recent fMRI study on individuals with autism and Asperger syndrome showed a 
failure to activate the fusiform face area during face processing. Damage to fusiform 
gyrus and to amygdala results in impaired face recognition [24,25]. 

Fig. 1. Examples of spiral, space-variant, topologies in the spatial distribution of elements in 
natural systems. 
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Parts of the inferior and medial temporal cortex may work together to process 
faces. For example, the anterior inferior temporal cortex and the superior temporal 
sulcus project to the lateral nucleus of the amygdala, with the amygdala responsible 
for assigning affective significance to faces, and thus affecting both attention and 
mnemonic aspects of face processing [26,27]. 

Behavioral studies suggest that the most salient parts for face recognition are, in 
order of importance, eyes, mouth, and nose [28]. 

Eye-scanning studies in humans and monkeys show that eyes and hair/forehead are 
scanned more frequently than the nose [29,30], while human infants focus on the eyes 
rather than the mouth [31]. Using eye-tracking technology to measure visual 
fixations, Klin [32] recently reported that adults with autism show abnormal patterns 
of attention when viewing naturalistic social scenes. These patterns include reduced 
attention to the eyes and increased attention to mouths, bodies, and objects. 

3   Information Processing 

The high specialization of specific brain areas for face analysis and recognition 
motivates the relevance of faces for social relations. On the other hand, this suggests 
that face understanding is not a low level process but involves higher level functional 
areas in the brain. These, in turn, must rely on a rich series of low level processes 
applied to enhance and extract face- specific features. 

Among these processes it is possible to define: 

oFace detection and tracking. This process may involve the analysis of 
dynamic as well as geometric and photometric data on the retinal projection 
of the face. 

oFacial features extraction. Facial features are not simply distinctive points on 
the segmented face, but rather a collection of image features representing 
specific (and anatomically stable) areas of the face such as the eyes, 
eyebrows, ears, mouth, nostrils etc. Other, non-standard, subject-specific 
features are also included, such as the most famous Marilyn Monroe’s 
naevus. 

oFace image registration and warping. Humans can easily recognize faces 
which are rotated and distorted up to a limited extent. The increase in time 
reported for recognition of rotated and distorted faces implies: the 
expectation on the geometric arrangement of facial features, and a specific 
process to organize the features (analogous to image registration and 
warping) before the actual recognition process can take place. 

oFeature matching. This process involves the comparison between the 
extracted set of facial features and the same set stored in the brain. The two 
process of feature extraction and matching (or memory recall) are not 
completely separated and sequential. From the eye scan paths recorded 
during face recognition experiments, it seems that, after moving the eyes 
over few general facial features, the gaze is directed toward subject-specific 
features, probably to enforce the expected identity. 
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Fig. 2: Spatial organization of sensory elements in the human retina. (Top) Picture of the 
cones in the fovea centralis. (bottom) Diagram of the spatial distribution of the photoreceptors 
in the retina. 

Fig. 3. Comparison of the spatial arrangement and size of the cones in the fovea and in the 
periphery. 
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Fig. 5. Extraction of space-variant fixations. a) Original face image. b) Log-polar fixations 
extracted from (a). 

 

 

 

 

Fig. 4. Design of a space-variant imaging topology for image re-mapping. (Top) Actual layout 
of the log-polar sampling applied to images. (Bottom) Schematic representation of the log-
polar transformation and the associated coordinate systems. 
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From these processes higher level reasoning is possible, not only to determine the 
subject’s identity, but also to understand more abstract elements (even uncorrelated to 
the subject’s identity) which characterize the observed person (age, race, gender, 
emotion etc.). 
Together with the defined general visual processes, the understanding of more 
abstract terms also requires the intervention of task-specific processes, such as motion 
analysis and facial features tracking for understanding emotion-specific patterns [4, 6, 
7, 33-35]. 

As it is beyond the scope of this paper to trace all face-specific information 
processing, we will concentrate on face recognition and authentication, which not 
only are among the most studied aspects related to visual processing, but probably the 
most representative of the tasks involved in face image analysis. 

4   Sensor Topologies and Spiral Grids 

To achieve any visual task, including face recognition, humans are able to 
purposively control the flow of input data limiting the amount of information 
gathered from the sensory system [36-38]. This is needed to reduce the space and 
computation time required to process the incoming information. 

It seems that every natural system is designed to minimize the amount of energy 
spent to achieve its goals. The minimal energy policy not only influences the 
processes and activities of living systems, more often related to survival, but also the 
mechanisms determining the geometrical structure of natural systems themselves. 
There are many examples in nature where the geometry of the system is specifically 
designed to limit the amount of space required to store/organize its elements. In many 
cases it seems that spiral topologies are the best suited geometric arrangements to 
allow an optimal (space saving) distribution of the elements in space. Some examples 
are depicted in figure 1. 

The anatomy of the early stages of the human visual system is a clear example: 
despite the formidable acuity in the fovea centralis (1 minute of arc) and the wide 
field of view (about 140x200 degrees of solid angle), the optic nerve is composed of 
only 106 nerve fibres. The space-variant distribution of the ganglion cells in the retina 
allows a formidable data flow reduction. In fact, the same resolution would result in a 
space-invariant sensor of about 6x108 pixels, thus resulting in a compression ratio of 
1:600 [39]. 

The probability density of the spatial distribution of the ganglion cells, which 
convey the signal from the retinal layers to the optic nerve and is responsible for the 
data compression, follows a logarithmic-polar law. The number of cells decreases 
from the centre of the retina toward the periphery, with the maximal resolution in the 
fovea [40]. The same data compression can be obtained on electronic images, either 
by using a specially designed space-variant sensor [41], or re-sampling a standard 
image according to the log-polar transform [38,39]. 

The analytical formulation of the log-polar mapping describes the mapping that 
occurs between the retina (retinal plane ( , )) and the visual cortex (log-polar or 
cortical plane (  , )). The derived logarithmic-polar law, taking into account the 
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linear increment in size of the receptive fields, from the central region (fovea) 
towards the periphery, is given by: 
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0  (1) 

 
where a defines the amount of overlap among neighboring receptive fields, 0 is the 
radius of the innermost circle, q1  is the minimum angular resolution of the log-
polar layout, and ( , ) are the polar coordinates. 

Other models for space-variant image geometries have been proposed, like the 
truncated pyramid [42], the reciprocal wedge transform (RWT) [43] and the complex 
logarithmic mapping (CLM) [44]. 

Several implementations of space-variant imaging have been developed: space-
variant sensors [41], custom designed image re-sampling hardware [45], and special 
software routines [38,46]. Given the high processing power of current computing 
hardware, image re-mapping can be performed at frame rate without the need of 
special computing hardware, and also allows the use of conventional, low cost, 
cameras. 

Space-variant image geometries have been applied to a variety of tasks, such as: 
visual tracking, form and object recognition, computation of stereo disparity and 
optical flow, depth perception and robot navigation [14]. 

More recently space-variant imaging has been applied to facilitate recognition with 
different biometric modalities [46,47]. A remarkable example is the Iris Scan iris 
recognition system patented by John Daugman [49]. The iris is firstly filtered by a 
bank of Gabor filters, then a set of features are extracted along a circular pattern 
following the rings of the iris. The extracted set of features are bitmapped to form a 
one-dimensional string of bits, the IrisCode, which is the template used to perform 
the matching. Bigun [50] proposed a space-variant sampling of face images to build a 
representation based on Gabor filtering for classification purposes. Log-polar 
fixations have been also used to perform face image matching [14]. More recently, 
Jain [51] applied a bank of Gabor filters, along a spiral grip, to capture both local and 
global details in a fingerprint as a compact fixed length FingerCode. The fingerprint 
matching is based on the Euclidean distance between the two corresponding 
FingerCodes. 

5   Space-Variant Face Recognition 

An important perceptual mechanism in humans is visual attention. Again, as not all 
visually available data is relevant for every given task, the human perceptual system 
is capable of making a selection of the input signal in various dimensions: “signal 
space” (low or high frequency data), depth (image areas corresponding to objects 
close or far from the observer), motion (static or moving objects) etc.  The selection is  
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Fig. 6. Examples of spiral biometric representations. (a) Sample fingerprint and the extracted 
finger-code [51]. (b) Close up image of an eye and the circular pattern applied to extract the 
Iris-code [49]. (c) Log-polar pattern used to apply a Gabor decomposition of the facial features 
for face recognition [50]. 

 
controlled by a proper attention mechanism through ad-hoc band-limiting or focusing 
processes, which determine the areas of interest in the scene to which direct the gaze 
[48]. 

Given the abundance of data in a face image, both space-variant image re-sampling 
and the adoption of a selective attention mechanism can greatly improve the 
performance of recognition/authentication algorithms. The algorithms described for 
face authentication exploit these principles by extracting few pre-determined areas 
within the face and applying the matching to those image areas only. Processing face 
images these mechanisms must be tuned to the most salient features of the face itself. 

a) b) 

c) 
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5.1   Extraction of Facial Features 

A technique applied to detect the facial features relies on the application of 
morphological operators to enhance structured iconic data such as contours, valleys 
and peaks in the gray levels. This information is gathered to make hypotheses for the 
presence of specific facial features. For example, the visible part of the sclera of the 
eye corresponds to a peak in the gray levels while the nostrils correspond to valleys. 
The position of the facial features is determined in two steps: 

 
   a)                                 b)                              c) 

 
 

 
 

                                       d) 
 
 
 
 
 
 
 
 
 
 
 

   e)                                  f)  
 

Fig. 7. Facial features detection. a) Original image. b) Valley image after morphological 
filtering. c) Cumulative values computed along the rows of (b). d) Cumulative values 
computed along the columns of the window identified by the maxima extracted from (c). e) 
First guess for the eyes and mouth position. f) Final position of the facial features computed by 
template matching around the estimation in (e). 
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 by first computing the cumulative values of the filtered image along the rows. The 
eyes and mouth correspond to the areas with higher cumulative values; the mouth 
is assumed to lie in the area below the eyes; 

 the same process is performed along the columns in the area corresponding to the 
eyes, determined at the previous step. The two maxima correspond to the 
horizontal position of the two eyes. 

In order to avoid false matches a geometrical constraint is enforced to the position 
of the eyes and mouth, which is to lie at the vertexes of a triangle. The values 
assumed by the angles of the triangle are bounded by values determined 
experimentally (44° < i < 84°). 

The exact position of the features is determined by computing the cross-correlation 
between the image and a feature template, within a 10x10 pixels window centered on 
the previously determined position. The template is obtained by cutting the eyes and 
mouth out of a sample image of the same subject. From an extensive test this choice 
demonstrated to give more accurate results than computing an average template. This 
is due to the fact that the averaging process deforms considerably the feature’s shape 
degrading the matching results. 

The three correlation values stemming from the eyes and mouth are averaged to 
obtain a score between –1 and 1. If the geometric constraint is satisfied and the 
matching score is higher than a given threshold the fixations are considered as valid 
ones. In order to determine the discriminant value for the correlation score, a 
validation test has been performed on a set of 2019 images completely uncorrelated 
from the recognition database. These images have been divided into two classes: all 
images (1609) where the facial features are partially occluded or not visible, plus all 
the images where the mean difference between the estimated and the manually 
determined feature positions is greater than a given threshold1; all remaining images 
in the set (410). 

The FAR and FRR test values were computed from the feature correlation scores 
of the two image sets. These statistical measures represent the capability of separating 
the two classes, valid and wrong features. The score value corresponding to equal 
FAR and FRR determines the reliability of the estimated features. 

5.2   Analysis of Matching Techniques 

Two matching techniques are presented. In the former, the subject is represented by a 
collection of fixations from the face image. The matching is performed by computing 
the correlation between the representation of the reference subject and the acquired 
face image. The algorithm is based on the following steps: 
1. Given the position of selected facial features (the eyes and the mouth), three log-

polar fixations are extracted from the acquired image of the subject (see figure 5). 
2. The log-polar images are warped to simulate views as close as possible to the pose 

and orientation of the reference subject’s face (almost parallel to the image plane). 
                                                           
1 This threshold is determined statistically by computing the probability of locating the facial 

features correctly in more than 50% in a given image ensemble. 
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Fig. 8. Extraction of the face window and warping. 

3. Corresponding fixations are compared by computing the sum of the absolute 
values of gray level differences2 and the normalized correlation. Two matching 
scores are obtained from each fixation independently. 

4. The scores obtained by the log-polar fixations are combined to form a 6 
components vector representing the similarity between the subject and the model. 

The log-polar transformation is computed at frame rate by using special re-
mapping software routines. The feature extraction and matching processes may be 
iterated over other subject-independent (like the eyebrows) or subject-dependent 
features, thus increasing the reliability of the recognition process. 

The latter technique performs the matching over a single window containing the 
whole face [52]. As a major problem with template matching is the registration of the 
two images, the window is warped according to a feature space determined by the 
position of the facial features (see figure 3). A simpler technique performs the 
matching on just a single window containing the whole face in Cartesian coordinates. 
As a major problem with template matching is the registration of the two images, the 
window is warped according to a feature space determined by the position of the 
facial features. Therefore, in this case, the facial features are not used to extract sub-
windows out of the subject’s face but rather to align and scale the face with the model 
image [52]. 

                                                           
2 To compute the difference, the gray levels of each log-polar fixation are first normalized to 

the range of intensity values of the corresponding facial feature of the reference subject. 

Original image 

Warped 
image 

Normalized space

(0, 1)
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Fig. 9. Sample images recorded from the industrial database. 

Fig. 10. Sample images from the database acquired in our laboratory. 
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6   Evaluation of Matching Techniques 

Every face matching scheme is devised to deliver a similarity score from each 
compared image-template pair. From the computed scores a statistical classifier can 
be used to determine the similarity between a given model and the subject. 

The described algorithms were tested on a subset (with, at least, two images for 
each subject) of the FERET database [6] yielding 2.5 EER for both methods [14]. The 
same tests were also performed on the Olivetti Resarch Lab database [55], using the 
five even images, out of the set of ten per subject, to simulate training, and the other 
five for testing. The matching result for each trial has been obtained using a max rule 
to combine the similarity scores, yielding 8.5% EER (performing full face matching). 

In order to test the systems within a real scenario, two ad-hoc databases were 
collected. The former (“academic” database) is quite similar, in principle, to the 
FERET database [6]. The database contains 124 gray level images (8 bits) from 45 
subjects, the image size is 512x512 pixels with approximately the same number of 
males and females. 

To test the algorithms in the worst conditions, a more challenging database 
(“industrial” database) has been acquired, composed of 488 gray level images (8 bits 
per pixel) from 75 subjects. The image size is 384x288 pixels and the head size is 
always smaller than 80x120 pixels. This database as been acquired from a camera 
placed at the entrance of an industry working area. The subjects were completely 
unaware of the camera and, as a consequence, the faces within the pictures are quite 
different in size, facial expression, orientation and pose. Most of the pictures from the 
same subject were acquired at least days or even weeks apart. The resulting face 
database has so many unpredictable changes to make it a real challenge for any face 
matching technique. 

The similarity measurements for the subjects in the databases are obtained from a 
complete matching over all the images in the data set (all subjects versus all images). 
Given M images for each of N subjects, the results obtained can be divided into two 
classes3 (assuming, as a general rule, that more than a single score is available for 
each image comparison): 

 matching scores obtained comparing all different images of the same subject, 
equal to N x M x (M - 1) comparisons (client tests); 

 matching scores obtained comparing all different images of different subjects, 
equal to N x M2 – N x (N + M - 1) comparisons (impostor tests); 

 
A covariance matrix is defined describing each of the two classes: 
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3 As a consequence of the experimental procedure the training set and the test set are disjoint, 

except for the case where the image used to build the representation of one subject is also 
used for an impostor test. 
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where Ni represents the number of elements of class “i” and mi is the mean value of 
the same class. Given the entire ensemble of matching scores for the two classes 
(each score can be regarded as a vector within the class), the discrimination power 
can be defined through five statistical indexes [52-54]: 

 The intraset (R1 and R2 ) and interset(H) distances (class separability indexes). 

 The Bayesian error probability. 

 The false acceptance, false rejection and the equal error rate (FAR, FRR, EER). 

The first two indexes define the distances among the elements of the same class 
and between the two classes. By comparing the two it is possible to define the 
separability between the two classes, e.g. to discriminate the set of clients from all the 
impostors. 

Given the intraset distances R1 and R2 , computed as the mean distances between 
all matching vector pairs4 in the two classes, and the interset distance H, computed as 
the mean distance among all vectors in the two classes, for a good separation between 
the two classes the intraset distances are expected to be much smaller than the interset 
distance: 

H
RRQ 21  (3) 

a low value of Q means the two classes are well separated. 
Another separability measure is given by the Bhattacharrya distance [11]: 
 

dxxpxp
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where x is the measurement vector, 1 and  2 represent the two classes. The resulting 
distance  is bounded between 0 and 1. If either of the two conditional probabilities 
p(x/y) is equally zero, the two classes are very well separated, while if  is equal to 
zero the two classes are superimposed. Consequently, the smaller the value of  the 
higher the separability between the two classes. 

Assuming the probability density of the measurements vectors to be Gaussian, it is 
possible to compute: 
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4 A matching vector is defined as the set of matching scores obtained from the matching engine 

of the system. The vector can be composed of a single element, if the matching involves a 
single facial feature, or many elements 
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where m1 and m2 are the mean measurement vectors of the two classes (clients and 
impostors), 1 and 2 are the covariance matrices of the measurements of the two 
classes. The Bayesian error probability can be estimated from the Bhattacharrya 
distance as: 

2
1

eP  (6) 

 
Most of the techniques applied to evaluate the similarity between the 

representation of two subjects rely on single distance measurements. In the presented 
method multiple fixations are used to represent the subject, yielding multiple distance 
measurements for each subject. In order to analyze the distribution of the client and 
impostor tests it is necessary to represent the probability densities as one-dimensional 
functions. The Fisher transform (a method for multivariate system analysis is) allows 
to project a vector function on a one-dimensional space. Through this technique it is 
possible to analyze the distributions of the measurement vectors of the two classes as 
two one-dimensional functions. The matching scores are used to compute the Fisher 
vector: 
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where N1 and N2 represent again the number of elements in each class and the other 
terms are defined as in the previous equations. The measurement vectors are 
projected on the Fisher’s vector and the distribution of the two classes are computed. 
The resulting curves represent the probability densities of the missed clients and the 
allowed impostors, as a function of the matching score. The integrals of the two 
curves represent the FAR and FRR. From the resulting representation two results are 
inferred: 

 The equal error rate of the system, which is the probability of equally accepting an 
impostor or rejecting a client. This measure is computed as the probability 
corresponding to the coordinate, on the horizontal axis, where the two probability 
density functions have the same area. 

 The best discriminant threshold, which is the threshold to be applied to the 
computed matching scores to assure the best separation between the two classes. 
This is determined by the horizontal coordinate corresponding to the intersection 
point between the two curves. 

Both these parameters define the goodness of the identity verification system, but 
the second one can also be applied as a threshold to perform recognition. 
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Fig. 11. Fisher distributions computed from the matching scores obtained from the two databases 
used in the experiments. (Top) distribution obtained computing the matching scores over space-
variant fixations on the academic database. (Middle) Distributions obtained computing the 
matching on a single window centred on the industrial database. The distributions on the left is 
obtained from a subset of the database, the one on the right is  related to the full database. 
(Bottom) Fisher distribution computed from a commercial system tested on the industrial 
database. 

Among the many variables in the matching process we concentrated on the 
influence of the feature localization error. From the reported experiments it turns out 
that the system’s performances are greatly influenced by the accuracy in the 
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estimation of the position of facial features. In fact, two different methods were tested 
for feature detection: the former based on matching a generic template of the facial 
features, the latter applying a specific template extracted from the image of the model 
face, which correspond to the actual facial features of the subject to be recognized. 
The second approach effectively maximizes the probability of correct feature 
localization for the subject to be recognized. 

From the obtained matching scores a simple recognition experiment has been 
attempted. Given a model image for each subject (or client), all other images matched 
with the five highest correlation scores (the same model image has not been matched 
with itself) were ranked. By applying a simple voting procedure, where the subject 
corresponding to the highest number of instances within the selected five is chosen, a 
remarkable 98% recognition rate was obtained. The remaining 2% was composed of 
subjects were all five selected images were from different individuals but still 
included at least one image of the client. 

This last result confirms the need for a two-step matching strategy where an iconic 
matcher is firstly used to perform a rough separation between the two classes (clients 
and impostors) and selecting a set of possible candidates. The following stage can be 
an independent measurement, like a higher resolution and more localized matching, 
but performed only on the image set already selected. 

Table 1. Performances of the face matching system described in section 4.2 The two columns 
in the middle report the computed error probability and the false acceptance/rejection with two 
different methods for the extraction of the facial features. As a reference, the last column 
reports the performances of a highly reputed commercial system. 

 Subject-based 
template 

Generic 
template 

Commercial system 
based on LFA 

Pe 30.5% 36.5% 31.5% 
FAR 15% 25% 19.68% 
FRR 17% 21.3% 20.34% 

7   Conclusion 

The analysis of faces is one of the most important visual processes in humans. From 
neurophysiology and psychofisics experiments it turns out that high level processes 
are devoted to the interpretation of face images. Several areas in the brain effectively 
cooperate to the selection and extraction of face-related features for recognition. In 
particular, parts of the inferior and medial temporal cortex may work together to 
process faces. Based on these findings it is possible to postulate that distinctive 
features, both subject-dependent and subject-independent, are used to perform 
recognition. On the other hand this is not a serial process, as implicit in many 
computer-based recognition systems, but rather a parallel process where recognition 
is performed while the features are extracted. As more features are detected and 
extracted, the confidence in recognition is improved. The model of face analysis, as 



Spiral Topologies for Biometric Recognition           87 

learned from neurophisiology, can be applied as the basic scheme for an information 
system to process face images. 

Given this basic computational scheme, the concept of fixation is fundamental for 
recognition. As in many natural systems the spatial distribution of image elements is 
crucial because it determines the image resolution and the amount of information 
conveyed by each single fixation. Resolution and the amount of information are not 
always linearly dependent: the same amount of information can be represented with a 
small resolution given a proper spatial organization of the picture elements. For this 
reason many natural systems adopt a spiral, space-variant distribution of their 
elements to maximize the amount of information with a “minimal energy” 
representation. To incorporate this concept within a biometric system is 
straightforward. Several examples exist in the literature where space-variant 
representations have been used even for non-facial biometrics. Two remarkable 
examples are the iris-code designed for iris recognition and the finger-code applied to 
fingerprint recognition. 

 
An iconic matching algorithm, based on the analysis of fixations, has been 

considered and stressed to the worst possible working conditions by using an ad-hoc 
database. The aim was to understand the actual limits and failing modes not only of 
the specific method applied, but also of any general iconic-based matching technique. 

From the error indices reported in this, as well as previous papers [40,41], it is 
possible to make the following considerations: 

 The face registration and/or warping step is critical for the entire recognition 
process. Space-variant representations implicitly enforce a high spatial 
localization of features. In fact, small displacement induce big differences on the 
image. 

 The performances of an identity verification system cannot be assessed with a trial 
on a data set only, but multiple and different data sets are necessary to understand 
the real failing modes. For this reason the proposed system has been tested on 
several databases. 

 There is an intrinsic limit, also statistically demonstrated, in using a matching 
technique alone to discriminate a set of given clients from the class of all possible 
impostors. 

The clear limitations of a single matching engine in making a discrimination 
among thousands of images, enforces the need for either a multi-level or a multi-
algorithmic process, where several (at least two) cooperating “experts” are applied to 
the same authentication process. 

Several aspects have been addressed explicitly but many are still under 
investigation. In this paper the analysis has been restricted to a simple image 
representation, but further work can be done by matching multiple features either at 
the first level or at the second processing level. 



88           M. Tistarelli, E. Grosso, and A. Lagorio 

References 

[1] R. Chellappa, C.L. Wilson, and S. Sirohey. “Human and machine recognition of faces: 
A survey”. Proceedings of the IEEE, Vol. 83, pp 705-740, 1995. 

[2] T. Kanade. Computer recognition of human faces. Birkhauser, Basel and Stuttgart, 
1977. 

[3] P. Sinha and T. Poggio. “I think I know that face…”. Nature, Vol. 384, pp. 404, 1996. 
[4] L. Wiskott, J.M. Fellous, N. Kruger and C. von der Malsburg. “Face recognition and 

gender determination”. In Proceedings Int.l Workshop on Automatic Face and Gesture 
Recognition, pp. 92-97, Zurich, Switzerland, 1995. 

[5] Anil K. Jain, Ruud Bolle, Sharath Pankanti. Biometrics, Personal Identification in 
Networked Society, Kluwer Academic Publishers, 1999 

[6] H. Wechsler, P. Phillips,V. Bruce, F. Soulie, and T. Huang (Eds.), Face Recognition. 
From Theory to Applications, NATO ASI Series F, Vol. 163, Springer-Verlag, Berlin 
Heidelberg. 

[7] G. Cottrell and J. Metcalfe. “Face, gender and emotion recognition using holons”. In D. 
Touretzky, editor, Advances in Neural Information Processing Systems, Vol. 3, pages 
564-571, San Mateo, CA, 1991. Morgan Kaufmann. 

[8] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. “Eigenfaces vs. fisherfaces: 
Recognition using class specific linear projection”. IEEE Trans. on PAMI, PAMI-
19(7):711-20, 1997. 

[9] G.J. Edwards, T.F. Cootes and C.J. Taylor. “Face Recognition Using Active 
Appearance Models”. In Proc. of 5th European Conference on Computer Vision, pp 
581-95, Springer Verlag, 1998. 

[10] R. Brunelli and T. Poggio. “Face recognition through geometrical features”. In Proc. of 
2nd European Conference on Computer Vision, pp 792-800, S. Margherita Ligure 
(Italy), 1992. Springer Verlag. 

[11] B. Mogbaddam, T. Jebara and A. Pentland. “Bayesian face recognition”. Pattern 
Recognition, 33(11):1771-82, Nov. 2000. 

[12] G.C. Feng, P.C. Yuen, and D.Q. Dai. “Human face recognition using pca on wavelet 
subband”. Journal of Electronic Imaging, 9(2):226--33, 2000. 

[13] C. Liu and H. Wechsler. “Evolutionary pursuit and its application to face recognition”.  
IEEE Transaction on PAMI, 22(6):570-582, 2000. 

[14] M. Tistarelli and E. Grosso. “Active vision-based face authentication”. Image and 
Vision Computing: Special issue on Facial Image Analysis, M. Tistarelli ed., Vol. 18, 
no. 4, pp 299-314, 2000. 

[15] C. Darwin. The expression of the emotions in man and animals. London, U.K.: John 
Murray, 1965. (Original work published 1872) 

[16] C. Goren, M. Sarty and P. Wu. “Visual following and pattern discrimination of face-
like stimuli by newborn infants”. Pediatrics, 56, 544–549, 1975. 

[17] G. E. Walton and T. G. R. Bower. “Newborns form “prototypes” in less than 1 
minute”. Psychological Science, 4, 203–205, 1993. 

[18] J. Fagan. “Infants’ recognition memory for face”. Journal of Experimental Child 
Psychology, 14, 453–476, 1972. 

[19] M. de Haan and C. A. Nelson. “Recognition of the mother’s face by 6-month-old 
infants: A neurobehavioral study”. Child Development, 68, 187–210, 1997. 



Spiral Topologies for Biometric Recognition           89 

[20] C. M. Leonard, E. T. Rolls, F. A. W. Wilson and G. C. Baylis. “Neurons in the 
amygdala of the monkey with responses selective for faces”. Behavioral Brain 
Research, 15, 159–176, 1985. 

[21] I. Gauthier, M. J. Tarr, A. W. Anderson, P. Skudlarski and J. C. Gore. “Activation of 
the middle fusiform “face area” increases with expertise in recognizing novel objects”. 
Nature Neuroscience, 2, 568–573, 1999. 

[22] N. Kanwisher, J. McDermott and M. M. Chun. “The fusiform face area: A module in 
human extrastriate cortex specialized for face perception”. Journal of Neuroscience, 
17, 4302–4311, 1997. 

[23] G. McCarthy, A. Puce, J. C. Gore and T. Allison. “Facespecific processing in the 
human fusiform gyrus”. Journal of Cognitive Neuroscience, 8, 605–610, 1997. 

[24] R. T. Schultz, I. Gauthier, A. Klin, R. K. Fulbright, A. W. Anderson, F. R. Volkmar, P. 
Skudlarski, C. Lacadie, D. J. Cohen and J. C. Gore. “Abnormal ventral temporal 
cortical activity during face discrimination among individuals with autism and 
Asperger syndrome”. Archives of General Psychiatry, 57, 331–340, 2000. 

[25] A. R. Damasio, J. Damasio and G. W. Van Hoesen. “Prosopagnosia: Anatomic basis 
and behavioral mechanisms”. Neurology, 32, 331–341, 1982. 

[26] C. A. Nelson. “The development and neural bases of face recognition”. Infant and 
Child Development, 10, 3-18, 2001. 

[27] J. P. Aggleton, M. J. Burton and R. E. Passingham. “Cortical and subcortical afferents 
to the amygdala of the rhesus monkey (Macaca mulatta)”. Brain Research, 190, 347–
368, 1980. 

[28] J. Shepherd. “Social factors in face recognition”. In G. Davies, H. Ellis & J. Shepherd 
(Eds.), Perceiving and remembering faces (pp. 55–79). London: Academic Press, 1981. 

[29] A. L. Yarbus. Eye movements and vision. New York: Plenum Press, 1967. 
[30] F. K. D. Nahm, , A. Perret, D. Amaral, and T. D.  Albright. “How do monkeys look at 

faces?” Journal of Cognitive Neuroscience, 9, 611–623, 1997. 
[31] M. M. Haith,., T. Bergman, and M. J. Moore. “Eye contact and face scanning in early 

infancy”. Science, 198, 853–854, 1979. 
[32] A. Klin. “Eye-tracking of social stimuli in adults with autism”. NICHD Collaborative 

Program of Excellence in Autism. Yale University, New Haven, CT, May 2001. 
[33] B. Braathen and M. S. Bartlett and G. Littlewort and J. R. Movellan. “First Steps 

Towards Automatic Recognition of Spontaneous Facial Action Units” ACM Workshop 
on Perceptive User Interfaces, Orlando (FL), Nov. 15-16 2001. 

[34] Picard, R.W.. “Toward computers that recognize and respond to user emotion”. IBM 
System,(39), 3/4, 2000. 

[35] Picard, R.W. “Building HAL: Computers that sense, recognize, and respond to human 
emotion”. MIT Media-Lab TR-532. Also in  Society of Photo-Optical Instrumentation 
Engineers. Human Vision and Electronic Imaging VI, part of IS&T/SPIE9s Photonics 
West, 2001. 

[36] D.H. Ballard. “Animate vision”. Artificial Intelligence, Vol. 48, pp. 57-86, 1991. 
[37] Y. Aloimonos (Ed.). “Purposive, qualitative, active vision”. CVGIP: Image 

Understanding, 56(special issue on qualitative, active vision), Vol. 56, July 1992. 
[38] M. Tistarelli. “Active/space-variant object recognition”. Image and Vision Computing, 

13(3):215-226, 1995. 



90           M. Tistarelli, E. Grosso, and A. Lagorio 

[39] E. L. Schwartz, D. N. Greve, and G. Bonmassar. “Space-variant active vision: 
definition, overview and examples”. Neural Networks, Vol. 8, No. 7/8, pp. 1297-1308, 
1995. 

[40] C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson. “Human photoreceptor 
topography”. J Comp Neurol., vol. 292, no. 4, 497-523, 1990. 

[41] G. Sandini, G. Metta. “Retina- like sensors: motivations, technology and applications”. 
In Sensors and Sensing in Biology and Engineering. T.W. Secomb, F. Barth, and P. 
Humphrey (Eds). Springer-Verlag. 2002 

[42] P. J. Burt, Smart sensing in machine vision”. In Machine Vision: Algorithms, 
Architectures, and Systems, Academic Press, 1988. 

[43] F. Tong, Ze-Nian Li. “Reciprocal-wedge transform for space-variant sensing”. IEEE 
Transactions on PAMI, Vol. 17, 500-511, 1995 

[44] E. L. Schwartz. “Spatial mapping in the primate sensory projection: Analytic structure 
and relevance to perception”, Biological Cybernetics, vol. 25, 181-194, 1977. 

[45] T.E. Fisher and R.D. Juday. “A programmable video image remapper”, In Proc. of 
SPIE, vol. 938, 122-128, 1988 

[46] E. Grosso, M. Tistarelli. “Log-polar Stereo for Anthropomorphic Robots”. In Proc. of 
6th European Conference on Computer Vision, LNCS 1842, Springer Verlag, 299-313, 
2000 

[47] G. Sandini and M. Tistarelli. “Vision and space-variant sensing”. In H. Wechsler (Ed), 
Neural Networks for Perception: Human and Machine Perception, Academic Press, 
1991 

[48] Y. Yeshurun and E.L. Schwartz. Shape description with a space-variant sensor: 
Algorithms for scan-path, fusion and convergence over multiple scans”. IEEE 
Transactions on PAMI, vol. 11, 1217-1222, Nov. 1989 

[49] J. Daugman. "High confidence visual recognition of persons by a test of statistical 
independence”. IEEE Transactions on PAMI, vol. 15, no. 11, 1148-1161, 1993 

[50] J. Bigun. “Retinal vision applied to facial features detection and face authentication”. 
Pattern Recognition Letters, vol. 23, no. 4, 463-475, 1997 

[51] K. Jain, S. Prabhakar, L. Hong, S. Pankanti. “Filterbank-based fingerprint matching”. 
IEEE Transactions on IP, vol. 9, no. 5, 846-859, 2000 

[52] M. Tistarelli, A. Lagorio, and E. Grosso. “Understanding Iconic Image-Based Face 
Biometrics”. Proc. of Int.l Workshop on Biometric Authentication, Copenaghen, 
Denmark, Springer Verlag, LNCS 2359, 19-29, 202 

[53] M. Tistarelli, A. Lagorio, and E. Grosso. “Image-Based techniques for biometric 
authentication”. Proc. of Int.l Conference on Multimedia and Expo, special session on 
Biometrics: New Challenges for User Authentification, Lausanne, Switzerland, August 
22-26, 2002 

[54] Grother P.J. “Cross validation comparison of NIST ocr databases”. In Proceedings of 
the SPIE, volume 1906, 296-307, 1993 

[55] Samaria, F., Harter, A.: Parameterisation of a Stochastic Model for Human Face 
Identification. In Proceedings of 2nd IEEE Workshop on Applications of Computer 
Vision, Sarasota, FL. IEEE Computer Society Press, 1994 

 
 
 



Statistical Learning Approaches with

Application to Face Detection

Emanuele Franceschi, Francesca Odone, and Alessandro Verri

INFM - DISI, Università di Genova, Genova (I)

Abstract. We present a concise tutorial on statistical learning, the the-
oretical ground on which the learning from examples paradigm is based.
We also discuss the problem of face detection as a case study illustrating
the solutions proposed in this framework. Finally, we describe some new
results we obtained by means of an object detection method based on
statistical hypothesis tests which makes use of positive examples only.

1 Introduction

Over the years long standing recognition problems of computer vision research
have been approached with a broad spectrum of techniques. On one end of the
spectrum one finds geometric methods in which recognition takes place if the
obtained description matches the geometric model. On the other end trainable
methods build a solution from a given set of examples. Not surprisingly, practi-
cal solutions fall in the middle attempting to combine the strengths of these two
rather extreme views. Face detection is a prototypical example since in the lit-
erature one finds many different approaches to the problem effectively exploring
the entire spectrum — see for example [3, 13, 36].

Here, starting from a description of recent advances in the learning from
examples approach we summarize some of the most up-to-date techniques for
face detection and present some new results obtained in the particular case in
which only positive examples are used.

2 A Brief Tutorial on Statistical Learning

In this short introduction to statistical learning theory we follow the seminal
works in [30, 31, 8, 6]. Additional material on Support Vector Machines can be
found in [5], while for a broader introduction we refer to [10].

2.1 Setting the Notation and the Problem

Statistical learning is emerging as a key methodology for dealing with a vast
class of problems aiming at finding a relation between inputs and outputs. The
application domains include computer vision and speech understanding, com-
puter graphics, text and document classification, bioinformatics, and time series
prediction.
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In the typical setting one considers two random variables x ∈ X ⊂ IRd, the
input, and y ∈ Y ⊂ IR, the output, related by a probabilistic relationship. Given
a data set D� ≡ {(xi, yi) ∈ X × Y }�

i=1 called training set, obtained by sampling
� times the set X ×Y according to a certain probability distribution p(x, y), the
key problem of statistical learning consists in finding a function f : X → Y that
can be used to predict a value y for each x ∈ X , given D�. The ideal solution
is defined as the minimizer of a measure of the expected error, the so called
expected risk, defined as

I[f ] ≡
∫

X,Y

V (y, f(x))p(x, y) dxdy,

where V is some loss function measuring the price to pay predicting f(x) in
place of y.

The minimizer of I[f ], f0, often called target function, belongs to some space
F and cannot be found in practice, because the probability distribution p(x, y)
is unknown. In practice, using the data set D� one can build an approximation
of the expected risk, called empirical risk [31], defined as

Iemp[f ; �] =
1
�

�∑
i=1

V (yi, f(xi)).

The minimizer of the empirical risk can be thought of as an approximation to
the ideal estimator. However, the minimization of the empirical risk in F is not
unique (a typical example of ill-posed problem) and, if the solution space is too
large, might lead to overfitting.

In order to avoid overfitting, statistical learning studies solutions for which
the distance between the empirical and expected risk is bounded through in-
equalities of the type

I[f ] < Iemp[f ] + ϕ

(√
h

�
, η

)
, (1)

where ϕ is an increasing function of h/� and η and the bound holds true with
probability at least η for all functions in a certain space, called hypothesis space,
in which the empirical risk can be minimized uniquely. The quantity h measures
the capacity of the hypothesis space and is the key to control overfit. For more
details and examples of capacity measures and exact forms of ϕ we refer the
reader to [32, 14, 31, 1].

2.2 Regularization Networks

As proposed in [7, 31], instead of minimizing the empirical risk, one looks for the
optimal trade off between the empirical risk and the capacity of the hypothesis
space as suggested by inequality (1). This observation leads to the principle of
Structural Risk Minimization.
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Alternatively, [34] considers hypothesis spaces which are Reproducing Kernel
Hilbert Spaces (RKHS). An RKHS is a Hilbert space of functions f of the form
f(x) =

∑N
n=1 anφn(x), where {φn(x)}N

n=1 is a set of linearly independent basis
functions and N is not necessarily finite. The norm of a function f in an RKHS
is defined as:

‖f‖2
K =

N∑
n=1

a2
n

λn
,

where {λn}N
n=1 is a decreasing sequence of strictly positive real numbers such

that
N∑

n=1

λn < +∞.

It is then easy to show that the λn and the basis functions {φn}N
n=1 define the

symmetric positive definite kernel function:

K(x,y) =
N∑

n=1

λnφn(x)φn(y).

If we define an hypothesis space H as

H = {f ∈ RKHS : ‖f‖K ≤ A},

it can be shown that the capacity of H is an increasing function of A (see for
example [8]). The solution of the learning problem is found by searching for the
minimum of functionals like

Φ[f ] =
1
�

�∑
i=1

V (yi, f(xi)) + λ‖f‖2
K . (2)

This can be viewed as an example of regularization of an ill posed problem where
uniqueness is achieved by finding the optimal trade off between the data term, the
empirical risk, and the smoothness term, ‖f‖2

K . Here λ is a positive parameter
controlling the relative weight. For a fixed λ, the regularized solution can be
thought of as the function of minimum RKHS norm approximating the data
within some degree of accuracy. A discussion linking structural risk minimization
to regularization networks can be found in [8].

An important feature of the minimizer of Φ[f ] is that for a broad range of
loss functions the minimizer has the same general form [34]

f(x) =
�∑

i=1

αiK(x,xi). (3)

Spline approximation and Radial Basis Functions are examples of this scheme
[9, 31].
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2.3 Support Vector Machines and Related Schemes

In this section we discuss a few learning techniques based on the minimization of
functionals of the form (2) and on the choice of different loss functions. Different
V lead to different learning techniques, and thus to different learning algorithms
for computing the coefficients αi in (3).

Linear approximation schemes arise from the minimization of the functional
in (2) with the quadratic loss function V defined as

V (y, f(x)) = (y − f(x))2.

In these cases the coefficients αi in (3) satisfy the following linear system of
equations [9])

(K + λI)α = y,

where I is the identity matrix, y = (y1, ..., y�), α = (α1, ..., α�), and Kij =
K(xi,xj).

In the case of Support Vector Machines (SVM) [4, 31] we distinguish between
real output (regression) and binary output (classification) problems. The scheme
of SVM for classification is obtained through the loss function V

V (y, f(x)) = (1 − yf(x))+, (4)

where (t)+ = max{0, t}. In the case of classification the solution is given by the
sign of Eq. (3). SVMs for regression are based, instead, on the loss function V ,
called ε-insensitive loss

V (y, f(x)) = |y − f(x)|ε, (5)

where |t|ε ≡ max{0, |t| − ε}.
In both cases, the coefficients αi can be found by solving a Quadratic Pro-

gramming (QP) problem with linear constraints. The regularization parame-
ter λ appears only in the linear constraints: for each coefficient αi we have
0 ≤ αi ≤ 1/(2λ�). A number of algorithms for training SVM have been pro-
posed: some are based on a decomposition approach where the QP problem is
attacked by solving a sequence of smaller QP problems [19], others on sequential
updates of the solution [22].

We conclude this section with two important comments. First, we notice
that a remarkable property of SVMs is that both loss functions lead to sparse
solutions, i.e., unlike in the case of linear approximation methods, typically only
a small fraction of the coefficients αi in the expansion (3) are nonzero (the data
points xi associated with the nonzero αi are called support vectors). The sparsity
of the solution means that if one discards all the data points that are not support
vectors, the same solution is found. One can immediately see that SVMs have
interesting data compression properties: the support vectors represent the most
informative data points and carry all the information contained in the training
set, thus all the other training examples could be discarded.
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Second, it can be shown that, in classification, the inverse of the RKHS norm
equals the margin [31], a quantity measuring the distance of the closest point
in the training set from the separating surface. Therefore, an SVM looks for a
separating surface which leaves the closest point as far as possible by controlling
the norm (i.e., the smoothness) of the solution.

3 Face Detection

Face detection is an active area of research (see, for instance, [16, 35, 24, 23, 26,
33] or the surveys [3, 13, 36]). In this brief description on the state-of-the-art
we consider face detection methods for single image, and focus on example-
based face detection. In this field many approaches have been proposed, ranging
from eigenfaces [29], Neural Networks [24, 25], SVM classifiers trained on whole
faces [20, 21] and on face components [11, 18], systems based on Adaboost [33,
17], Naive Bayes Classifiers [26]. Here we describe some of the most interesting
achievements presented in recent years.

In [21] is presented an example-based learning system for object detection
in the context of face, people, and car detection. The system uses Haar wavelet
features as inputs to a SVM classifier. In the training step, the system takes
a set of aligned and normalized images of the object class (positive examples)
and a set of patterns that do not belong to the object class (negative examples).
Haar wavelet features are computed for each pattern and then an SVM is trained
to distinguish between positive and negative examples. In the testing phase, the
system slides a fixed size window over a test image and uses the trained classifier
to decide whether a window show the objects of interest. In the described system
the whole object was represented by one feature vector which is fed into a single
classifier.

More recently, in [12], a component-based approach is proposed. The object
to detect is decomposed into a set of components that are interconnected by a
flexible geometrical model. The results show that this system performs better
for detecting objects when varying the viewing conditions, since each component
varies less under pose changes than the pattern belonging to the whole object.
The authors developed a two-level classification system that implies geometri-
cal relations between components. On the first level, component linear SVM
classifiers independently detect components of the face. On the second level,
the classifier checks if the geometrical configuration of the detected components
corresponds with the learned geometrical model of a face. For what concernes
the choice of the components, instead of selecting eyes, mouth, and nose that
are specialized for the face detection application, they designed a more general
method that automatically determines selective rectangular components from a
set of synthetic face images.

Viola and Jones [33] propose a face detection system based on AdaBoost.
They represent image windows as a collection of features called rectangle fea-
tures (inspired by Haar Wavelets) and train a weak classifier for each feature.
Since each weak classifier is based on a single rectangle feature, the AdaBoost
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procedure works in this case as a feature selector. At each iteration only the
feature performing best — i.e., producing smaller number of errors on the train-
ing set compared to the others — is added to the final strong classifier. The
authors achieve state-of-the-art results with this method, and also present a way
of combining the classifiers that they call “cascade” that allows fast elimination
of background regions and therefore fast detection.

4 A Method Based on Hypothesis Testing

In this section we describe a novel methodology for detecting faces in images
which is heavily based on hypothesis testing mechanisms.

Classical nonparametric statistical approaches (see [15] for a quite complete
overview of this subject) are perhaps less popular within the computer vision
community than Bayesian and/or statistical learning techniques, but appear to
be well suited for dealing with detection problems as they allow for a simple way
to estimate and control the percentage of false negatives by appropriate tuning
of the confidence level.

We consider a setting in which there are enough positive examples to allow for
reasonable estimates of 1-dimensional marginal probability distributions but no
information is available on the negative examples. The underlying null hypothesis
is the presence of a face in the image. The null distribution is unknown and
estimated from positive training data. Since no information is available on the
alternative, the power of the test is boosted through multiple tests, selected
during the training process with nonparametric independence tests. Each test is
derived from an image measurement.

The learning process we present is efficient in the sense that increasing the
number of training samples leads to better estimates of the underlying proba-
bility densities without increasing the computing cost at runtime.

4.1 Background

Traditional hypothesis tests rely on the basic assumption of knowing the prob-
ability distribution of the observable under the null hypothesis and a model for
the alternative against which the test is run. Possibly the most common choice
for an alternative is the shift model, effectively leading to one- or two-sided test
such as, for example, the Student’s one-sample t-test.

Here we estimate the null distribution p(x) as the histogram of our measure-
ments from the positive training data. We then define a probability density f(t)
as follows ∫ t

0

f(z)dz =
∫ +∞

−∞
p(x)U0(t − p(x))dx (6)

where U0(·) is the unit step function. For a fixed t ≥ 0, the integral on the l.h.s.
is equal to the probability of the event

Dt = p−1([0, t]) (7)
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(see the dashed area in Fig. 1). We then perform a one-sided test on f(t) rejecting
the null hypothesis for values of t lower than a critical value tα. As usual, the
significance level of the test is given by

α =
∫ tα

0

f(t)dt.

Effectively, this test implements the maximum likelihood principle by rejecting
the null hypothesis if the observable x falls in a region of small probability (see
Fig. 1). Note that by Eqs. 6 and 7 the tail of f may account for disjoint intervals
on the x-axis (see again Fig. 1).

p(x)

x

tα

Fig. 1. The dashed areas of the distribution p(x) contribute to the “tail” (or the reject
region) t ≤ tα of the distribution f defined by Eq. 6.

4.2 Outline of the Proposed Method

The proposed method is based on extracting a large number of features from im-
ages and estimate the probability distribution of each feature using the available
positive training examples. A criterion derived from maximum likelihood is used
to identify the most significant image features, then a rank test is performed to
further select a maximal subset of pairwise independent features. Let N be the
size of the set of features that survived the selections. At run time, a hypothesis
test is performed for each of the N features. The null hypothesis is, in each case,
the presence of a face. A face is detected if at least M of the N tests are passed.
The significance of the global test depends on M as well as on the single tests.

The system can be summarized in four steps: (i) feature extraction, (ii) se-
lection of salient features, (iii) selection of independent features, and (iv) testing
against the object presence in the image. In the training phase, all steps are per-
formed, while at runtime, after the features selected in the third stage have been
computed, only the fourth step needs to be performed. We now describe each
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step in some detail considering the problem of face detection as a case study.
The training set is the set of positive examples from the CBCL-MIT database
(2429 images of size 19×19 ).

Feature Extraction During the first step we aim at computing a large number
of potentially representative image measurements, with no limits on their type
and number. In this section we list the image measurements based on raw pixels
and ranks that we adopted. The current collection of image measurements is not
exhaustive and can easily be enriched; we simply regard it as a starting point
for validating our method.

For each image patch of size 19 × 19 (the size of the whole image in the
training stage) we compute the following collection of features:

– Pixel gray values. We consider 19×19=361 grey values, one for each pixel.
– Integral measurements computed along specific directions (at the moment

limited to vertical, horizontal, and 45◦ diagonal). These can be viewed as a
subset of the Radon transform of the image, i.e. as a tomographic scan of
the grey value image, and for this reason we refer to them as tomographies.
We compute 19 vertical, 19 horizontal, and 37 diagonal tomographies, for a
total of 75.

– Ranklets, a family of orientation selective rank features designed in close
analogy with Haar wavelets [27]. Whereas Haar wavelets are a set of filters
that act linearly on the intensity values of the image, ranklets are defined
in terms of the relative order of pixel intensities and are not affected by
equalization procedures. We compute 5184 horizontal, 5184 vertical, 5184
diagonal ranklets, for a total of 15,552.

Overall this amounts to estimate about 16,000 features.

Feature Selection In the second step we select a subset of the computed fea-
tures according to their saliency. Considering the type of hypothesis test based
on the distribution f of Eq. 7, a quite natural definition of saliency can be given
in terms of tα. For the required significance level α, the image measurement with
the distribution p leading to the largest tα has maximum saliency because no
measurement falling in the accept region has probability smaller than tα (see
Fig. 1). An approximate implementation of the above criterion can be obtained
by ranking the computed features according to the ratio r between the variance
estimated from the histogram obtained with the training set and their natural
definition interval ([0, 255] for grey values and tomographies and [−1, 1] for ran-
klets). Given a threshold 0 < τ1 < 1, the features for which r ≤ τ1 are retained
while all the other features are discarded. This ensures that all the distributions
of the selected features for the problem at hand are sufficiently peaked. Through
this step with τ1 = 0.15, all single pixel measurements are discarded and the
number of features reduced to about 2000.

The third step aims at selecting a subset of independent features out of the
salient features identified in the second step. The reason for this is to reduce
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the number of features without compromising the power of the final test. This
should ensure a faster rejection of the null hypothesis (the object is in the im-
age) after a smaller number of tests. The selection is performed first running the
Spearman’s independence test [15] on all pairs of features of the same category.
For each feature category Spearman’s test is used to build a graph with as many
nodes as features in the category. Given a threshold 0 < τ2 < 1, an edge between
two nodes is created if the corresponding features reject the independence hy-
pothesis with probability lower than τ2. Finally, maximally complete subgraphs
— or cliques — are searched in each graph. For each graph, the clique nodes
correspond to features pairwise independent with confidence greater than 1−τ2.
With τ2 = 0.5 in our face detection problem we are left with 44 vertical ranklets,
64 horizontal ranklets, 329 diagonal ranklets, and 38 tomographies for a total of
475 features. The independence hypothesis is consistent with the posterior ob-
servation that features of the same clique correspond to not overlapping image
regions.

Detection The fourth and final step tests the hypothesis of the presence of a
face in the image. In the present setting, all images are 19×19 pixels and the
hypothesis is simply whether, or not, an image is a face image. In this step the
idea is to gather evidence for rejecting the null hypothesis – that is, that the
image is a face image – by running all the tests, one for each of the selected,
independent features.

It is interesting to see what happens if these tests are run on the training
images. Fig. 2 shows the histogram of the number of tests passed with a certain
confidence level 1 − α for the training images with α = 0.2. From Fig. 2 it is
apparent that running sufficiently many tests, even with a very high confidence
level for each single test, almost no positive example passes all tests (see the
rightmost bins of Fig. 2). However, from each histogram, we can empirically
estimate the number of tests to be passed to obtain any overall confidence level.
Fig. 2 shows how to compute empirically the number of tests to be passed to
achieve a given confidence level: the vertical lines drawn indicate an overall
significance 0.05 (left) and 0.1 (right).

4.3 Experimental Results

We tested our system on the test sets of the MIT-CBCL database, that consists
of 472 faces and 23’573 non-faces of size 19 × 19. We first ran experiments
using features from one category only. The fraction M of tests to be passed for
detecting a face is determined by looking at histograms similar to those of Fig.
2. The results, not reported here, show that the discriminating power of each
category is not sufficient to reach a good characterization of faces. In particular,
the diagonal ranklets, though sharply peaked across the training set, have almost
zero discriminating power. For this reason we decided to discard them and use
the remaining N=146 features. Using this reduced set of features we re-estimated
the fraction of tests to be passed, obtaining M=110 for α = 0.1.
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Fig. 2. Histogram of the number of tests passed by each training image (α = 0.2 for
all tests). The leftmost and rightmost vertical lines mark the overall significance level
of 0.05 and 0.1 respectively.

The ROC in Fig. 3, obtained varying the significance of the single test, shows
the overall results. The best performance is obtained by using the 146 featurs
selected according to the proposed method. The use of 146 features randomly
sampled or of 146 features with overlapping image support leads to inferior
performances (see Fig. 3). The advantage of including ranklets in the feature
set can be appreciated by looking the the ROC curve which is obtained using
tomographies only. Only with ranklets the equal error rate is in line with the
state-of-the-art on this database for whole face approaches [2, 27]. The perfor-
mance of the described system is almost indistiguishable from a linear one-class
SVM [28] trained on the same 146 features. In this work, the thresholds used
to select peaked and pairwise independent image measurements were set em-
pirically (τ1 = 0.15 and τ2 = 0.5, respectively). We are currently studying the
effects of changing these parameters and the developing a technique for pa-
rameter estimation. Preliminary results on the use of the proposed method for
finding faces in full size images are very promising (see Fig. 4 for results in
face detection and Fig. 5 for face close-ups retrieved by our system). A pro-
totype version, limited to the case of close-up, can be tested on our webpage:
http://slipguru.disi.unige.it/research.
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Fig. 3. ROC curves on the MIT-CBCL test set. The top curves are obtained using
the 146 features selected by the proposed method and a one-class SVM trained on the
same representation. The two lower curves are obtained using 146 randomly sampled
and 146 contiguous features respectively, the middle curve with tomographies only (no
ranklets).

Fig. 4. Some experimental results on face detection obtained with our system. The
detected faces, are marked by a white frame at the detection scale.
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Fig. 5. Some experimental results obtained with our system for face close-ups retrieval.
The detected face, if any, is marked by a white frame at a certain scale.

We believe that the main merit of this approach lies in the direct application
of simple, nonparametric statistical techniques with minimal assumptions on
the probability distributions of the data. Clear strengths of this method are its
generality, modularity, and wide applicability. On the other side, the flexibility
of the approach can lead to suboptimal solutions unless some problem specific
knowledge is injected into the system. Another interesting feature of this method
is the limited computational cost, especially at run time. The tests, even if
multiple, are very fast, making this system suitable for efficient multiscale search
(on this respect, we obtained promising preliminary results, both for efficiency
and detection precision).
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Abstract. We suggest a novel attentional mechanism for detection of smooth 
convex and concave objects based on direct processing of intensity values. The 
operator detects the region of the forearm in images, enabling location of the 
hand. The operator is robust to variation in illumination, scale, pose, and hand 
orientation. This method uses the geometrical structure of the forearm, which is 
common to all people; therefore no limitation of the hand pose and no personal 
adjustments are required.  

 

1. Introduction  
 
Using motion against a static background is so far the most common attentional 
mechanism for hands (see [2],[3] ). Using skin color is also a very widely used 
attentional mechanism (see [4],[5],[6]), and some recent work is based on shape and 
edge statistics (see [7],[8]). Though the methods above have many advantages, they 
suffer from severe limitations such as a strong influence from surrounding objects, 
limiting the system robustness, and sometimes pre-processing is required for the hand 
or for its surrounding area. We overcome these problems by means of a novel 
attentional operator that detects smooth three-dimensional convex or concave objects 
in the image. The operator is environment-neutral; is robust for hand pose and 
orientation, scaling, and illumination; and is capable of detecting the subject against a 
strongly textured background. It is employed for hand detection, specifically to detect 
the forearm, which is narrower end is connected to the hand. The operator answers the 
above problems, it requires a relatively short running time, and its robustness leads to 
reliable results. The actual hand boundaries are located using edge information. 
 

2. Attentional Operator for Detection of Convex Regions 
 
This section defines the attentional mechanism for convex and concave objects. The 
method takes advantage of the forearm’s geometrical structure as a truncated cone.  
 

2.1. Defining the Argument of Gradient 
 
Let us estimate the gradient map of image I(x; y) by: I(x,y) D (x)G (y) I(x,y), 
G (x)D (y) I(x,y)], where G (t) is the one-dimensional Gaussian with zero mean and 
standard deviation , and D (t) is the derivative of that Gaussian. We turn the 
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Cartesian representation of the intensity gradient into a polar representation. The 
argument (also denoted “phase”, and usually marked by (x,y)), is defined by: 

where the two-dimensional arctangent is defined by: 

and the one dimensional arctan(t) denotes the inverse function of tan(t) so that:  
2, 2arctan( ) : [ , ] .t The attentional mechanism is simply the derivative 

of the argument map with respect to the y direction: 

 

We denote ( , )
y

x y  as Y-Phase. 

 
2.2. Mathematical Formulation of Y-Phase Reaction to Cylinder 
 
The projection of concave and convex objects can be estimated by paraboloids that 
are like a cylinder in extreme asymmetry. The paraboloid model is represented ([1]). 
Our mathematical formulation refers to a general cylinder of the form: f(x,y) = (ay-
bx-c)2, where a,b,c are constants, at least one of a,b is not equal to zero, and ay=bx+c 
is the axis of the cylinder. The first-order derivatives of the cylinder are: dx=-2b(ay-
bx-c), dy=2a(ay-bx-c). The gradient argument is therefore: (x,y)=arctan(-2b(ay-bx-c) 
,2a(ay-bx-c)). However, when b 0, (x,y) derivative exists in the whole plane, except 
for the ray: {(x,y) | ay=bx+c }. At this ray, (x,y) has a first-order discontinuity so its 
derivative in any direction different from the cylinder axis tends to infinity on this ray. 
The fact that for a horizontal cylinder the derivative in the y direction at the ray of the 
y=c/a, while continuous at the rest of the plane, can be clearly seen in Fig. 1(c). 
Working in a discrete environment, the difference between two neighboring points 
from different sides of the axis is proportional to b/a, and the operator reaction is 
proportional to the axis slant so that horizontal cylinders are emphasized most. For 
vertical cylinders b=0 and (x,y)=arctan(0, a(y-c)) is constant and derivable anywhere 
in the plane. 
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         (a)                   (b)              (c)         (d)                  (e)                  (f)    
Fig. 1. (a) The cylinder gray levels I(x,y)=k(y-80)2 .  

(b) The argument of the gradient of (a). The discontinuity along the x-axis.  

(c) Derivative of (b) in the y direction  

(d) The cylinder gray levels I(x,y)=k(x-80)2 .  

(e) The argument of the gradient of (d). The discontinuity along the x-axis.  

(f) Derivative of (e) in the y direction 

2.3. -Phase: Extending to Any Direction 
 
We also define the -directional variant of Y-Phase, whose reaction to a cylinder 
whose axis in the  direction is maximal, rather than merely the horizontal cylinders. 
We do it by rotating the gradient argument by: 

 
So the ray of discontinuity of the Y-Phase is transformed to a ray-forming angle of  
radians with the positive part of the x-axis. We then derive the rotated argument of the 
gradient in the direction: - /2 (or: + /2), to get the response to the ray 
discontinuity (see fig 1). The operator reaction is proportional to difference between 
the axis slant and . 
 

2.4. Features of -Phase 
 
The two-dimensional objects of constant albedo form a linear gray-level function and 
are usually of no interest (for example, walls). It can be easily shown that the -Phase 
attentional mechanism has zero response to planar objects. In addition, it can be 
shown that the response of -Phase to edges of planar objects is finite, and is 
therefore smaller than its response to horizontal cylinders, and it is easy to prove that 

-Phase is linear-dependent on scale. Another advantage of -Phase is that it is 
invariant under any derivable monotonically increasing (in the strong sense) 
transform of the gray level image. The practical meaning of the theorem is that 

-Phase is invariant, for example, under linear transformations, positive powers 
(where f(x; y) > 0), logarithm, and exponent. -Phase is also invariant under linear 
combinations (with positive coefficients) and compositions of these functions, since 
such combinations are also derivable and strongly monotonically increasing. The 
functions mentioned above and their combinations are common in image processing 
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for lighting improvement. This implies that -Phase is invariant under a large variety 
of lighting conditions. In view of -Phase invariance, the suggested model is not only 
a gray-level detector for cylinders, but also a detector of any derivable (strongly) 
monotonically increasing transformation of cylinders. This makes -Phase 
particularly attractive for usage in various scenes in which the environment is not 
known in advance.  
 

3. Forearm Detection Using -Phase 
 
3.1. Approximation by Truncated Cone 
 
One of the underlying ideas of the theoretical model is the estimation of the gray 
levels describing convex and concave objects, in our case the forearm, using a 
truncated cone. Figure 2 shows such a cone, in synthetic form, along with magnified 
forearms. The forearm gray levels are similar to those of a cone.  
 

     Synthetic truncated cone 

    Original image     Forearm zoom + rotation       phase at 90     phase zoom + rotation 

Fig. 2. The forearm exhibits strong similarity to the artificial truncated cone’s gray levels, each 
column being created by the function f=bg-cy2 where bg is a background constant and c is a 
normalization constant calculated for each iteration. The iterations proceed from left to right; 
and each iteration is narrower by 1.5% of the maximal width at the left end of the cone. A clear 
response of -Phase at 90  along the forearm is observed. The -Phase of the forearm strongly 
reacts along the forearm; this behavior resembles that of the Y-Phase of a horizontal cone. 

 
3.2. Defining Horizontal and Vertical Phase 
 
The -Phase operator has a maximal reaction to objects that exhibit convexity in the 
direction of the derivative; therefore, at angles similar to the forearm’s orientation, the 
angular operator has a strong response along the forearm’s length. The hand could be 
at any orientation, and at the beginning its orientation is unknown. Figure 3 
demonstrates that using the operator only in the vertical and horizontal directions is an 
economical and efficient solution. We define the V-Phase operator as the sum of the 
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vertical components, where  = 90° and 270°. The H-Phase operator is defined as the 
sum of the horizontal components, where  = 0° and 180°. As expected, the operators 
gain very high response along the forearm; therefore we search for a prolonged area 
where the operator attains high values. Although neither of the separate operators 
V-Phase and H-Phase covers every angle, the combination covers all angles, with a 
wide overlap. We define the VH-Phase method as using the V-Phase and H-Phase 
operators. 
 
3.3. Robustness 
 
The method is robust both for the hand’s properties and for changes in the 
surrounding environment. In addition to orientations as demonstrated in the previous 
section, we demonstrate robustness to tilt (fig 4), self-rotation (fig 5) and size (fig 6). 

 

Fig. 3. Covering all forearms orientation. From top to bottom: the original image, the H-Phase 
and V-Phase. The forearm area attains very high response for at least one of the operators, with 
wide range of overlapping. 
 

Fig. 4. Top row: a sequence of images where in each successive image the tilt is greater by 
approximately 22.5 ; the covered range is almost 70 . Bottom row: V-Phase operator with AOI 
marked on it. In addition to the forearm, the hair receives high response from the operator. 
Using object dimension for edge map easily disqualifies the hair area. 

Original image + 
prolonged AOI form 
V-Phase and H-Phase 

H-Phase + 
prolonged AOI 

V-Phase + 
prolonged AOI 
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Fig. 5. At top, the original image with AOI marked on it. At bottom, the V-Phase image. 
Although the background is very cluttered, the forearm area gets very a high response of the 
V-Phase. 
 

Fig. 6. At top, the original image with AOI marked on it. At bottom, the H-Phase image. The 
largest hand is more than 10 times larger than the smallest hand. The forearm area remains the 
dominant feature in the H-Phase maps. 
 

4. Superiority of the VH-Phase Method 
 
In this section we briefly delineate the result of extensive comparison between 
combination of H-Phase and V-Phase operators against the motion based method. 
1. Reaction to 3D Objects: The VH-Phase method detects 3D objects, so both 

operators’ (H-Phase and V-Phase) response to a hand made of cardboard with 
same external boundaries (2D object) is relatively low, as opposed to motion-
based and color-based methods (fig 7). 

2. Scaling-dependency: Color-based methods prefer large objects, whereas 
VH-Phase have linear dependency (fig 8). 

3. The surrounding objects’ color: VH-Phase operators use the surface area of the 
arm and therefore have very high response even when the background color is 
similar to the skin color, as opposed to motion-based and color -based methods 
where no color difference means no detection (fig 9) 
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4. Robust for illumination: Light intensity increases monotonically (in the strong 
sense), so the VH-Phase is not affected by lightning conditions, whereas other 
methods require optimal lightning conditions. Fig 10 has two images of the same 
scene, taken in different amount of lightning. The images include one factitious 
that is brighter then the real hand. The color base method succeed only when the 
lightning fits, when under lightning it focus on the factitious cardboard hand that 
become darker because of lacking light. The VH-Phase method ignore lightning 
amount correctly locates the real hand. 

 

5. Conclusions 
 
We introduce novel attentional operators (H-Phase and V-Phase) for detection of 
regions emanating from smooth convex or concave three-dimensional objects. We use 
it to detect the forearm, whence the hand. The operators are proved invariant under 
any derivable (strongly) monotonically increasing transformation of the image gray 
levels, which in practice means robustness to illumination changes. Robustness to 
orientation and scale is also demonstrated. The method is based on the geometrical 
structure of the forearm, which is common to all people; therefore no training stage is 
required. Furthermore, it uses only the surface area of the forearm and is not affected 
by the environment like motion-based and color -based method and thus remains free 
of their flaws. 
 
 

 
 

 

Fig. 7. Real hand vs. hand made of cardboard: We took two images from a sequence where 
both an artificial hand and a real hand are in motion. The motion -based method detects both 
real and artificial hands; VH-Phase detects only the real hand. 
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Fig. 8. Real hand vs. hand made of cardboard: The color-based method detects the largest 
object, or both when the sizes are similar. VH-Phase detects only the real hand, ignoring flat 
objects. 
 

  

Fig. 9. The background is similar to the skin color. The color-based method fails by marking 
most of the area as AOI (all the white area); VH-Phase detects only the small area around the 
forearm. 

Fig. 10. Two images of the same scene, taken in different amount of lightning. The images 
include one factitious that is brighter then the real hand. The color base method succeed only 
when the lightning fits, when under lightning it focus on the factitious cardboard hand that 
become darker because of lacking light. The VH-Phase method ignore lightning amount 
correctly locates the real hand. 
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Abstract. Within this paper a technique for model-based 3D hand tracking is
presented. A hand model is built from a set of truncated quadrics, approximating
the anatomy of a real hand with few parameters. Given that the projection of a
quadric onto the image plane is a conic, the contours can be generated efficiently.
These model contours are used as shape templates to evaluate possible matches
in the current frame. The evaluation is done within a hierarchical Bayesian fil-
tering framework, where the posterior distribution is computed efficiently using
a tree of templates. We demonstrate the effectiveness of the technique by using
it for tracking 3D articulated and non-rigid hand motion from monocular video
sequences in front of a cluttered background.

1 Introduction

Hand tracking has great potential as a tool for better human-computer interaction.
Tracking hands, in particular articulated finger motion, is a challenging problem be-
cause the motion exhibits many degrees of freedom (DOF). Representing the hand
pose by joint angles, the configuration space is 27 dimensional, 21 DOF for the joint
angles and 6 for orientation and location. Given a kinematic hand model, one may at-
tempt to use inverse kinematics to calculate the joint angles [19], however this problem
is ill-posed when using a single view. It also requires exact feature localization, which
is particularly difficult in the case of self-occlusion.

Most successful methods have followed the approach of using a geometric hand
model, introduced by Rehg and Kanade [13] in the DigitEyes tracking system. Their
hand model is constructed from truncated cylinders. The axes of these cylinders are
projected into the image, and the distances to local edges are minimised using non-
linear optimisation. Heap and Hogg [9] use a deformable surface mesh model, which
is constructed via principal component analysis (PCA) from example shapes obtained
with an MRI scanner. This is essentially a 3D version of active shape models, and shape
variation is captured by only a few principal components. The motion is not based on
a physical deformation model and thus implausible finger motions can result. Wu et
al. [20] model the articulated hand motion from data captured using a data glove. The
tracker is based on importance sampling, and hypotheses are generated by projecting a
’cardboard model’ into the image. This model is constructed from planar patches, and
thus the system is view-dependent.

It is clear that the performance of a model-based tracker depends on the type of
the used model. However, there is a trade-off between accurate modelling, and effi-
cient rendering and comparison with the image data. In fact this is generally true when

M. Tistarelli, J. Bigun, and E. Grosso (Eds.): Biometrics School 2003, LNCS 3161, pp. 114–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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modelling articulated objects for tracking, which is commonly done in the context of
human body tracking (see [11] for a survey). A number of different models have been
suggested in this context, using various primitives such as boxes, cylinders, ellipsoids
or super-quadrics.

The next section describes the geometric hand model used in this paper. Section 3
reviews work on tree-based detection. A short introduction to Bayesian filtering is given
in 4, and in section 5 we introduce filtering using a tree-based estimator. Tracking results
on video sequences of hand motion are shown in section 6.

2 Modelling Hand Geometry

This section describes the construction of a hand model from truncated quadrics. The
advantage of this method is that the object surface can be approximated with low com-
plexity and that contours can be generated using tools from projective geometry. This
hand model has previously been described in [15] but here it is used in a different track-
ing framework.

2.1 Projective Geometry of Quadrics and Conics

A quadric is a second degree implicit surface in 3D space, and it can be represented in
homogeneous coordinates by a symmetric 4 × 4 matrix Q [8]. The surface is defined
by all points X = [x, y, z, 1]T satisfying the equation

XTQX = 0. (1)

Different families of quadrics are obtained from matrices Q of different ranks. Particu-
lar cases of interest are:

ellipsoids, represented by matrices Q with full rank;
cones and cylinders, represented by matrices Q with rank(Q) = 3;
a pair of planes π0 and π1, represented as Q = π0π

T
1 + π1π

T
0 with rank(Q) = 2.

Note that there are several other projective types of quadrics, such as hyperboloids or
paraboloids, which like ellipsoids have a matrix of full rank. Under a Euclidean trans-
formation T =

[
R t
0T 1

]
the shape of a quadric is preserved, but in the new coordinate

system Q is represented by Q̂ = T−TQT−1.
A quadric has nine degrees of freedom, corresponding to the independent elements

of Q up to a scale factor. Given a number of point correspondences or outlines in multi-
ple views, quadric surfaces can be reconstructed, as shown by Cross and Zisserman [6].
It is also suggested that for many objects using a piecewise quadric representation gives
an accurate and compact surface representation. In order to employ quadrics for mod-
elling such general shapes, it is necessary to truncate them. For any quadric Q the
truncated quadric QΠ can be obtained by finding points X satisfying:

XTQX = 0 and XTΠX ≥ 0, (2)
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where Π is a matrix representing a pair of clipping planes (see figure 1a). The image of
a quadric Q =

[
A b
bT c

]
seen from a normalised projective camera P̃ = [I | 0] is a conic

C given by
C = cA− bbT, (3)

as shown in figure 1b. In order to obtain the image of a quadric Q in an arbitrary
projective camera P it is necessary to compute the transformation H such that PH =
[I | 0]. This normalising transformation is given by the matrix H = [P†|p⊥], where P†

is the pseudo inverse of P and p⊥ is the camera centre or the null vector of P (see [5]).

Π

-

-

+

Q

(a)

O

x

C

Q

sX( )
s0X(  )

(b)

Fig. 1. Projection of a quadric. (a) A truncated quadric QΠ , here a truncated ellip-
soid, can be obtained by finding points on quadric Q which satisfy XTΠX ≥ 0. (b)
The projection of a quadric Q into the image plane is a conic C.

2.2 Description of the Hand Model

The hand model is built using a set of quadrics {Qi}q
i=1, representing the anatomy of a

human hand as shown in figure 2. We use a hierarchical model with 27 degrees of free-
dom (DOF): 6 for the global hand position, 4 for the pose of each finger and 5 for the
pose of the thumb. Starting from the palm and ending at the tips, the coordinate system
of each quadric is defined relative to the previous one in the hierarchy. The palm is mod-
elled using a truncated cylinder, its top closed by a half-ellipsoid. Each finger consists
of three segments of a cone, one for each phalanx. They are connected by hemispheres,
representing the joints. A default shape is first obtained by taking measurements from a
real hand. Given the image data, shape matching can be used to estimate a set of shape
parameters, including finger lengths and a width parameter [17].

2.3 Generation of the Contours

Each clipped quadric of the hand model is projected individually as described in sec-
tion 2.1, generating a list of clipped conics. For each conic matrix C we use eigen-
decomposition to obtain a factorisation given by

C = T−TDT−1. (4)
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(a) (b)

Fig. 2. Geometric hand model. The hand model has 27 degrees of freedom is con-
structed using truncated quadrics as building blocks. Depicted is (a) a front view and
(b) an exploded view.

The diagonal matrix D represents a conic aligned with the x- and y-axis and centred
at the origin. The matrix T is the Euclidean transformation that maps this conic onto
C. We can therefore draw C by drawing D and transforming the points according to
T. The drawing of D is carried out by different methods, depending on its rank. For
rank(D) = 3 we draw an ellipse, for rank(D) = 2 we draw a pair of lines.

The next step is occlusion handling. Consider a point x on the conic C, obtained by
projecting the quadric Q, as shown in figure 1. The camera centre and x define a 3D ray
L. Each point X ∈ L is given by X(s) = [ xs ], where s is a free parameter determining
the depth of the point in space, such that the point X(0) is at infinity and X(∞) is at
the camera centre. The point of intersection of the ray with the quadric Q is found by
solving the equation

X(s)TQX(s) = 0 (5)

for s. Writing Q =
[

A b
bT c

]
, the unique solution of (5) is given by s0 = −bTx/c. In

order to check if X(s0) is visible, (5) is solved for each of the other quadrics Qi of the
hand-model. In the general case there are two solutions si

1 and si
2, yielding the points

where the ray intersects with quadric Qi . The point X(s0) is visible if s0 ≥ si
j ∀i, j,

in which case the point x is drawn. Figure 3 shows examples of hand model projections.

2.4 Learning Natural Hand Articulation

Model-based trackers commonly use a 3D geometric model with an underlying biome-
chanical deformation model [1, 2, 13]. Each finger can be modelled as a kinematic
chain with 4 DOF, and the thumb with 5 DOF. Thus articulated hand motion lies in a
21 dimensional joint angle space. However, hand motion is highly constrained as each
joint can only move within certain limits. Furthermore the motion of different joints
is correlated, for example, most people find it difficult to bend the little finger while
keeping the ring finger fully extended at the same time. Thus hand articulation is ex-
pected to lie in a compact region within the 21 dimensional angle space. We used a data
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(a) (b)

(c) (d)

Fig. 3. Examples of model projections. (a)-(d) show different hand poses. For each
example the 3D hand model is shown on the left and its projection into the image plane
on the right. Note that self-occlusion is handled when generating the contours.

glove to collect a large number of joint angles in order to capture natural hand articu-
lation. Experiments with 15 sets of joint angles captured from three different subjects,
show that in all cases 95 percent of the variance is captured by the first eight principal
components, in 10 cases within the first seven, which confirms the results reported by
Wu et al. in [20]. Figure 4 shows trajectories projected onto the first three eigenvectors
between a set of hand poses. As described in the next section, this lower dimensional
eigen-space will be quantised into a set of discrete states. Hand motion is then modelled
by a first order Markov process between these states. Given a large amount of training
data, higher order models can be learned.

3 Tree-Based Detection

For real applications the problem of tracker initialisation, as well as the handling of self-
occlusion and cluttered backgrounds remain obstacles. Current state-of-the-art systems
often employ a version of particle filtering, allowing for multiple hypotheses. The use
of particle filters is primarily motivated by the need to overcome ambiguous frames
in a video sequence so that the tracker is able to recover. Another way to overcome
the problem of losing lock is to treat tracking as object detection at each frame. Thus
if the target is lost in one frame, this does not affect any subsequent frame. Template
based methods have yielded good results for locating deformable objects in a scene
with no prior knowledge, e.g. for hands or pedestrians [2, 7, 14, 17]. These methods are
made robust and efficient by the use of distance transforms such as the chamfer or Haus-
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(a) (b)

Fig. 4. Paths in the configuration space found by PCA. (a) The figure shows a trajec-
tory of projected hand state vectors onto the first three principal components. (b) The
hand configurations corresponding to the four end points in (a).

dorff distance between template and image [3, 10], which were originally developed for
matching a single template. A key suggestion was that multiple templates could be dealt
with efficiently by building a template hierarchy and a coarse-to-fine search [7, 12]. The
idea is to group similar templates and represent them with a single prototype template
together with an estimate of the variance of the error within the cluster, which is used
to define a matching threshold. The prototype is first compared to the image; only if the
error is below the threshold are the templates within the cluster compared to the image.
This clustering is done at various levels, resulting in a hierarchy, with the templates at
the leaf level covering the space of all possible templates.

If a parametric object model is available, another option to build the tree is by par-
titioning the state space. Each level of the tree defines a partition with increasing res-
olution, the leaves defining the finest partition. Such a tree is depicted schematically
in figure 5(a), for a single rotation parameter. This tree representation has the advan-
tage that prior information is encoded efficiently, as templates with large distance in
parameter space are likely to be in different sub-trees.

It may be argued that there is no need for a parametric model and that an exemplar-
based approach could be followed, as by Toyama and Blake in [18]. However, for mod-
els with many degrees of freedom the storage space for templates becomes excessive.
The use of a parametric model allows the combination of an on-line and off-line ap-
proach in the tree-based algorithm. Once the leaf level is reached more child templates
can be generated for further optimisation. Hierarchical detection works well for locating
a hand in images, and yet often there are ambiguous situations that could be resolved
by using temporal information. The next section describes the Bayesian framework for
filtering.

4 Bayesian Filtering

Filtering is the problem of estimating the state (hidden variables) of a system given a
history of observations. Define, at time t, the state parameter vector as θ t, and the data
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Fig. 5. Tree-based estimation of the posterior density. (a) Associated with the nodes
at each level is a non-overlapping set in the state space, defining a partition of the
state space (here rotation angle). The posterior distribution for each node is evaluated
using the centre of each set, depicted by a hand rotated by a specific angle. Sub-trees
of nodes with low posterior probability are not further evaluated. (b) Corresponding
posterior density (continuous) and the piecewise constant approximation using tree-
based estimation. The modes of the distribution are approximated with higher precision
at each level.

(observations) as Dt, with D1:t−1, being the set of data from time 1 to t − 1; and the
data Dt are conditionally independent at each time step given the θ t. In our specific
application θ t is the state of the hand (set of joint angles, location and orientation) and
Dt is the image at time t (or some set of features extracted from that image). Thus at
time t the posterior distribution of the state vector is given by the following recursive
relation

Pr(θ t|D1:t) =
Pr(Dt|θ t) Pr(θ t|D1:t−1)

Pr(Dt|D1:t−1)
, (6)

where the normalising constant is

Pr(Dt|D1:t−1) =
∫

Pr(Dt|θ t) Pr(θ t|D1:t−1)dθ t. (7)

The term Pr(θ t|D1:t−1) in (6) is obtained from the Chapman-Kolmogorov equation:

Pr(θ t|D1:t−1) =
∫

Pr(θ t|θ t−1) Pr(θ t−1|D1:t−1)dθ t−1 (8)

with the initial prior pdf Pr(θ 0|D0) assumed known. It can be seen that (6) and (8)
both involve integrals. Except for certain simple distributions these integrals are in-
tractable and so approximation methods must be used. As has been mentioned, Monte
Carlo methods represent one way of evaluating these integrals. Alternatively, hierarchi-
cal detection provides a very efficient way to evaluate the likelihood Pr(Dt|θ t) in a
deterministic manner, even when the state space is high dimensional; as the number of
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templates in the tree increases exponentially with the number of levels in the tree. This
leads us to consider dividing up the state space into non-overlapping sets, just as the
templates in the tree cover the regions of parameter space. Typically this methodology
has been applied using an evenly spaced grid and is thus exponentially expensive as the
dimension of the state space increases. In this paper we combine the tracking process
with the empirically successful process of tree-based detection as laid out in section 3
resulting in an efficient deterministic filter.

5 Filtering Using a Tree-Based Estimator

Our aim is to design an algorithm that can take advantage of the efficiency of the tree-
based search whilst also yielding a good approximation to Bayesian filtering. We design
a grid-based filter, in which a multi-resolution partition is provided by the tree as given
in Section 3. Thus we will consider a grid defined by the leaves of the tree. Because the
distribution is characterised by being almost zero in large regions of the state space with
some isolated peaks, many of the grid regions can be discarded as possessing negligible
probability mass. The tree-based search provides an efficient way to rapidly concentrate
computation on significant regions. At the lowest level of the tree the posterior distri-
bution will be assumed to be piecewise constant. This distribution will be mostly zero
for many of the leaves. At each tree level the regions with high posterior are identified
and explored in finer detail in the next level (Figure 5b). It is to be expected that the
higher levels will not yield accurate approximations to the posterior. However, just as
for the case of detection, the upper levels of the tree can be used to discard inadequate
hypotheses, for which the negative log posterior of the set exceeds a threshold value.
The thresholds at the higher levels of the tree are set conservatively so as to not dis-
card good hypotheses too soon. The equations of Bayesian filtering (6)-(8), are recast
to update these states. For more details see [16].

5.1 Formulating the Likelihood

A key ingredient for any tracker is the likelihood function p(Dt|θ t), which relates the
observations Dt to the unknown state θ t. For hand tracking finding good features and
a likelihood function is challenging, as there are few features which can be detected and
tracked reliably. Colour values and edges contours appear to be suitable and have been
used frequently in the past [2, 20]. Thus the data is taken to be composed of two sets
of observations, those from edge data Dedge

t and from colour data Dcol
t . The likelihood

function is assumed to factor as

p(Dt|θ t) = p(Dedge
t |θ t) p(Dcol

t |θ t). (9)

The likelihood term for edge contours p(Dedge
t |θ t) is based on the chamfer distance

function [3, 4]. Given the set of projected model contour points U = {ui}n
i=1 and the

set of Canny edge points V = {vj}m
j=1, a quadratic chamfer distance function is given

by

d2
cham(U ,V) =

1
n

n∑
i=1

d2(i,V), (10)
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where d(i,V) = max(minvj∈V ||ui − vj ||, τ) is the thresholded distance between the
point, ui ∈ U , and its closest point in V . Using a threshold value τ makes the matching
more robust to outliers and missing edges. The chamfer distance between two shapes
can be computed efficiently using a distance transform, where the template edge points
are correlated with the distance transform of the image edge map. Edge orientation is
included by computing the distance only for edges with similar orientation, in order to
make the distance function more robust [12]. We also exploit the fact that part of an
edge normal on the interior of the contour should be skin-coloured.

In constructing the colour likelihood function p(Dcol
t |θ t), we seek to explain all the

image pixel data given the proposed state. Given a state, the pixels in the image I are
partitioned into a set of object pixels O, and a set of background pixels B. Assuming
pixel-wise independence, the likelihood can be factored as

p(Dcol
t |θ t) =

∏
k∈I

p(It(k)|θ t) =
∏
o∈O

p(It(o)|θ t)
∏
b∈B

p(It(b)|θ t), (11)

where It(k) is the intensity normalised rg-colour vector at pixel location k at time t.
The object colour distribution is modeled as a Gaussian distribution in the normalised
colour space, and a uniform distribution is assumed for the background. For efficiency,
we evaluate only the edge likelihood term while traversing the tree, and incorporate the
colour likelihood only at the leaf level.

6 Results

We demonstrate the effectiveness of our technique by tracking both hand motion and
finger articulation in cluttered scenes using a single camera. The results reveal the abil-
ity of the tree-structure to handle ambiguity arising from self-occlusion and 3D motion.
In the first sequence (figure 6) we track the global 3D motion of a pointing hand. The
3D rotations are limited to a hemisphere. At the leaf level, the tree has the following
resolutions: 15 degrees in two 3D rotations, 10 degrees in image rotation and 5 different
scales. These 12,960 templates are then combined with a search at 2-pixel resolution
in the image translation space. In the second example (figure 7) finger articulation is
tracked while the hand is making transitions between different types of gestures. The
tree is built by partitioning a lower dimensional eigen-space. Applying PCA to the data
set shows that more than 96 percent of the variance is captured within the first four
principal components, thus we partition the four dimensional eigen-space. The number
of nodes at the leaf level in this case is 9,163. In the third sequence (figure 8) tracking
is demonstrated for global hand motion together with finger articulation. The mani-
folds in section 2.4 are used to model the articulation. The articulation parameters for
the thumb and fingers are approximated by the first 2 eigenvectors of the joint angle
data set obtained from opening and closing of the hand. For this sequence the range
of global hand motion is restricted to a smaller region, but it still has 6 DOF. In total
35,000 templates are used at the leaf level. The tree evaluation takes approximately 2
to 5 seconds per frame on a 1GHz Pentium IV machine. Note that in all cases the hand
model was automatically initialised by searching the complete tree in the first frame of
the sequence.
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Fig. 6. Tracking a pointing hand in front of clutter. The images are shown with
projected contours superimposed (top) and corresponding 3D avatar models (bottom),
which are estimated using our tree-based algorithm. The hand is translating and ro-
tating. A 2D deformable template would have problems coping with topological shape
changes caused by self-occlusion.

7 Summary and Conclusion

Within this paper we have described a model-based hand tracking system which over-
comes some of the major obstacles which have limited the use of hand trackers in
practical applications. These are the handling of self-occlusion, tracking in cluttered
backgrounds, and tracker initialisation.

Our algorithm uses a tree of templates, generated from a 3D geometric hand model.
The model is constructed from a set of truncated quadrics, and its contours can be pro-
jected into the image plane while handling self-occlusion. Articulated hand motion is
learned from training data collected using a data glove. The likelihood cost function is
based on the chamfer distance between projected contours and edges in the image. Ad-
ditionally, edge orientation and skin colour information is used, making the matching
more robust in cluttered backgrounds. The problem of tracker initialisation is solved by
searching the tree in the first frame without the use of any prior information. We have
tested the tracking method on a number of sequences including hand articulation and
cluttered backgrounds. Furthermore within these sequences the hand undergoes rota-
tions leading to significant topological changes in the projected contours. The tracker
performs well even in these circumstances.
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Abstract. In this paper a new complete system for 3D face recognition
is presented. 3D face recognition presents several advantages against 2D
face recognition, as, for example, invariance to illumination conditions.
The proposed system makes use of a stereo methodology, that does not
require any expensive range sensors. The 3D image of the face is modelled
using Multilevel B-Splines coefficients, that are classified using Support
Vector Machines. Preliminary experimental evaluation has produced en-
couraging results, making the proposed system a promising low cost 3D
face recognition system.

1 Introduction

Face recognition is undoubtedly an interesting research area, growing in impor-
tance in recent years, due to its applicability as a biometric system in commercial
and security applications. The face recognition system has the appealing char-
acteristic of not being an invasive control tool, as compared with fingerprint or
iris biometric systems.

The most typical approach to face recognition is to analyze 2D face images,
and a large literature is available on this topic (for a review see [1], and [2]). The
analysis of 2D face has some inherent drawbacks: for example it is not able to
distinguish a real face from a picture of a face, since it does not consider depth
information. This could represent an awkward problem, especially in the authen-
tication context. Moreover, most part of techniques proposed in the literature
suffers from illumination changes problems.

The analysis of 3D images of a face represents a possible solution for both
these problems. Although 3D facial analysis has been already applied in some
research areas, as compression and synthesis for videoconferencing [3], recogni-
tion of faces basing on range images is still weakly addressed in the literature
[4,5,6,7,8,9]. More in detail, the first system that analyzes 3D faces was presented
in [4]: the method identified facial features points, based on local curvature com-
puted from range images. The face was segmented in convex and concave regions,
and features were determined from these regions. No recognition was performed
in this system. Gordon [5,6] was the first that realized a recognition system based
on range data. He computed geometric features of the sensed surface, integrating
some a priori knowledge. Recognition was performed using a template matching

M. Tistarelli, J.Bigun, and E. Grosso (Eds.): Biometrics School 2003, LNCS 3161, pp. 126–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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approach and a classification system in the feature space. Another approach was
proposed in [7,8], where the 3D information was determined using a coded light
approach with two separate sensors. The classification step was performed using
an eigenface approach and HMM-based technique. More recently, the same au-
thors present another system [9], that classifies range images, acquired using a
multi sensor system. The canonical position is determined from the range images
face, and a 3D Haussdorff distance is used for the classification step.

In this paper a new complete system for 3D face recognition is proposed,
based on stereoscopic images analysis. The process of stereo reconstruction aims
at recovering the 3D structure from a pair of images by searching for conjugate
points, i.e., points in the left and right images that are projections of the same
scene point. The difference between the positions of conjugate points is called
disparity. Stereo is a well known issue in Computer Vision, to which many articles
have been devoted (see [10] for a survey). The system proposed in this paper
has a clear advantage with respect to the previously introduced: the acquisition
process is fast and entirely low cost. In fact, the 3D information are acquired
using two cameras by applying the stereoscopic principles, without any need of
particularly expensive range sensors. Furthermore, the stereo setup calibration is
very easy and fast and there are different standard implemented methods freely
available on the web. This aspect is really important, especially in the view of
enlarging the applicability of the biometric technologies to real problems.

The range image obtained by the stereoscopic analysis is approximated us-
ing Multilevel B-Splines [11], an interpolation and approximation technique for
scattered data. The resulting approximation coefficients were used as features
for the classification, carried out by the Support Vector Machines (SVM) [12].
The reasons underlying the choice of using Multilevel B-Splines and Support
Vector Machines are the following: from one hand, Multilevel B-Splines coef-
ficients have been chosen for their approximation capabilities, able to manage
slight changes in facial expression. On the other hand, even if a considerable di-
mensionality reduction is obtained by this technique with respect to considering
the whole image [13], the resulting space is still large. Standard classifiers could
be affected by the so called curse of dimensionality problem; SVMs, instead, are
well suited to work in very high dimensional spaces (see for example [13]). This
classification system has been already employed by the authors in the context
of 2D face recognition [14]. In this version we explore the possibility to estimate
the face surfaces directly from the 3D data obtained by the acquisition system.

The proposed system has been used to collect a set of 90 faces, with 9 subjects
(each with 10 face, varying expressions). Classification accuracies on this data
set are very encouraging, and make the proposed approach a promising really
employable system for face recognition and authentication.

The rest of the paper is organized as follows: in the Sect. 2 the acquisition
system is detailed, while in the recognition system is described in Sect. 3. The
experimental evaluation is proposed in 4; finally, Sect. 5 contains conclusions
and future perspectives.
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2 The Acquisition System

Three-dimensional data are obtained from an active stereo system developed at
the VIPS (Vision, Image Processing, and Sound) laboratory1 of the Department
of Computer Science (University of Verona). The system is composed by two
optical cameras and a overhead projector which illuminates the scene with a
salt-and-pepper random texture (Figure 1). Thus, all the surfaces are textured,

Fig. 1. Active Stereo system of acquisition

and every small surface patch is characterized by a very distinctive pattern
(Figure 2(a) and (b)). This trick facilitate area-based stereo matching, which
would otherwise produces no meaningful results for uniformly colored areas. In
summary, the acquisition pipeline is composed of the following stages:

Calibration. The position and orientation of both cameras, as well as intrinsic
parameters are computed with the calibration algorithm described in [15]
and implemented in a Matlab toolbox2.

Rectification. Instead of relying on accurate mechanical alignment, a parallel-
camera acquisition geometry is “simulated” by transforming the images cap-
tured by the two cameras as if they were taken by two virtual parallel cam-
eras. This process is called epipolar rectification, and is described in [16].

Stereo Matching. Corresponding points on the left and right images are recov-
ered using the R-SMW area-based stereo matching algorithm [17]. However,
given that we project an artificial texture onto the scene, the choice of the
matching algorithm is less critical than in passive stereo.

The output of the system is a disparity map [10] related to the acquired subject
(Figure 2(c)). It is worth noting that the disparity map is very similar to a range
1 See http://vips.sci.univr.it.
2 The Camera Calibration Toolbox for Matlab is downloadable from
http://newbologna.vision.caltech.edu/bouguetj
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map [18] and it covers the 3D information we are using for recognizing the faces.
In particular light disparity pixels correspond to surface points that are closer
to the sensor and vice versa.

(a) (b) (c)

Fig. 2. Stereo images, left(a) and right (b), acquired while the overhead projector
projects a random texture to the subject, and disparity map (c)

3 The Classification System

The classification system is based on two stages: firstly, range images are mod-
elled using Multilevel B-Splines [11] and coefficients of approximation are ex-
tracted. Then, these coefficients are used for classification with Support Vector
Machines [12].

3.1 Multilevel B-Splines

The Multilevel B-Splines [11] represent an approximation and interpolation tech-
nique for scattered data. More formally, let Ω = {(x, y)|0 ≤ x ≤ m, 0 ≤ y ≤ n}
be a rectangular non-integer domain in the xy plane. Consider a set of scattered
data points P = {(xc, yc, zc)} in 3D space, where (xc, yc) is a point in Ω. The
approximation function f is defined as a regular B-Spline function, defined by a
control lattice Φ overlaid to Ω, visualized in Fig. 3. Let Φ be a (m +3)× (n +3)
lattice that spans the integer grid Ω.

The approximation B-Spline function is defined in terms of these control
points by:

f(x, y) =
3∑

k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l) (1)

where i = x� − 1, j = y� − 1, s = x − x�, t = y − y�, φij are control points,
obtained as weighted sums with B-Spline coefficients Bk and Bl of 4 × 4 set of
points, called proximity sets, belonging to Ω:
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Fig. 3. Configuration of control lattice Φ in relation to domain Ω.

φij =
∑

c w2
cφc∑

c ω2
c

(2)

where ωc = ωkl = Bk(s)Bl(t), k = (i + 1) − xc�, l = (j + 1) − yc�,
s = xc − xc�, t = yc − yc�, (xc, yc, zc) control points and φc = wczc∑3

a=0

∑3

b=0
w2

ab

.

By properly choosing the resolution of the control lattice Φ, it is possible to
obtain a compromise between the precision and smoothness of the function; a
good smoothness entails a cost in terms of low accuracy, and vice-versa.

Multilevel B-Splines approximation can overcome this problem. Consider a
hierarchy of control lattices Φ0, Φ1, . . . , Φh, that spans the domain Ω. Assume
that, having fixed the resolution of Φ0, the spacing between control points in Φi

is halved from one lattice to the next.
The process of approximation starts by applying the basic B-Spline approx-

imation to P with the coarsest control lattice Φ0, obtaining a smooth initial
approximation f0. f0 leaves a deviation Δ1zc = zc − f0(xc, yc) for each point
(xc, yc, zc) in P . Then, f1 is calculated by the control lattice Φ1, approximating
the difference P1 = {(xc, yc, Δ

1
c)}. The sum f1 + f2 yields a smaller deviation

Δ2zc = zc − f0(xc, yc) − f1(xc, yc) for each point (xc, yc, zc) in P .
In general, for every level k in the hierarchy, using the control lattice Φk, a

function fk is derived to approximate data points Pk = {(xc, yc, Δ
kzc)}, where

Δkzc = zc−
∑k−1

i=0 fi(xc, yc), and Δ0zc = zc. This process starts with the coarsest
control lattice Φ0 up to the highest lattice Φh. The final function f is calculated
by the sum of functions fk, f =

∑h
k=0 fk.

In general, the higher the resolution of the coarsest control lattice Φ0, the
lower the smoothness of the final function. Given a set of points in a domain
width×height, m and n indicate that the lattice Φ, on which the approximating
function has been built, has dimension

(width
m � + 3

)×(
height

n � + 3
)
. It follows

that high values of m and n indicate low dimensions of Φ.
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In the basic Multilevel B-Splines algorithm, the evaluation of f involves the
computation of the function fk for each level k, summing them over domain
Ω. This introduces a significant overhead in computational time, if f has to be
evaluated at a large number of points in Ω. To address this problem, Multilevel B-
Splines refinement has been proposed in [11]. This technique allows to represent
f by one B-Spline function rather than by the sum of several B-Spline functions.

Let F (Φ) be the B-spline function generated by control lattice Φ and let |Φ|
denote the size of Φ. With B-spline refinement, we can derive the control lattice
Φ′

0 from the coarsest lattice Φ0 such that F (Φ′
0) = f0 and |Φ′

0| = |Φ1|. Then,
the sum of functions f0 and f1 can be represented by control lattice Ψ1 which
results from the addition of each corresponding pair of control points in Φ′

0 and
Φ1. That is, F (Ψ1) = g1 = f0 + f1, where Ψ1 = Φ′

0 + Φ1.
In general, let gk =

∑k
i=0 fi be the partial sum of functions fi up to level k

in the hierarchy. Suppose that function gk−1 is represented by a control lattice
Ψk−1 such that |Ψk−1| = |Φk−1|. In the same manner as we computed Ψ1 above,
we can refine Ψk−1 to obtain Ψ ′

k−1 , and add Ψ ′
k−1 to Φk to derive Ψk such that

F (Ψk) = gk and |Ψk| = |Φk|. That is, Ψk = Ψ ′
k−1 + Φk . Therefore, from g0 = f0

and Ψ0 = Φ0 , we can compute a sequence of control lattices Ψk to progressively
derive control lattice Ψh for the final approximation function f = gh.

3.2 Support Vector Machines

Support Vector Machines [12] are binary classifiers, able to separate two classes
through an optimal hyperplane. The optimal hyperplane is the one maximizing
the “margin”, defined as the distance between the closest examples of different
classes. To obtain a non-linear decision surface, it is possible to use kernel func-
tions, in order to project data in a high dimensional space, where a hyperplane
can more easily separate them. The corresponding decision surface in the original
space is not linear.

The rest of this section details the theoretical and practical aspects of Support
Vector Machines: firstly, linear SVMs are introduced, for both linearly and not
linearly separable data. Subsequently, we introduce non linear SVMs, able to
produce non linear separation surfaces. A very useful and introductory tutorial
on Support Vector Machines for Pattern Recognition can be found in [12].

In the case of linearly separable data, let D = {(xi, yi)}, i = 1 . . . �, yi ∈
{−1, +1},xi ∈ �d be the training set of the SVMs. D is linearly separable if
exists w ∈ �d and b ∈ �, such that:

yi(xi · w + b) ≥ 1 for i = 1, . . . , � (3)

H : w · x + b = 0 is called the “separating hyperplane”. Let d+(d−) be the
minimum distance of the separating hyperplane from the closest positive (nega-
tive) point. Let us define the “margin” of the hyperplane as d+ + d−. Different
separating hyperplanes exist. SVMs find the one that maximizes the margin. Let
us define H1 : w ·x+ b = +1 and H2 : w ·x+ b = −1. The distance of a point of
H1 from H : w · x + b = 0 is |w·x+b|

‖w‖ = 1
‖w‖ , and the distance between H1 and
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H2 is 2
‖w‖ . So, to maximize the margin, we must minimize ‖w‖ = wT w, with

the constraints that no points lie between H1 and H2.
It can be proven [12] that the problem of training a SVM is reduced to the

solution of the following Quadratic Programming (QP) problem:

max{−1
2
αT Bα +

�∑
i=1

αi} (4)

�∑
i=1

yiαi = 0 and αi ≥ 0 (5)

where αi are Lagrange coefficients and B is a � × � matrix defined as:

Bij = yiyjxi · xj (6)

The optimal hyperplane is determined with w =
∑�

i=1 αiyixi, and the classifi-
cation of a new point x is obtained by calculating sgn(w ·x+ b). It is important
to observe that only those xi whose corresponding Lagrange coefficients αi are
not null contribute to the sum that defines the separating hyperplane. For this
reason, these points are called support vectors and, geometrically, lie along the
two hyperplanes H1 and H2 (see the Fig. 4). When data points are not lin-

Origin

W

H2

H1

Margin|| W
b−

Fig. 4. Geometric interpretation of SVMs. A hyperplane separates black points
from white points. The hyperplane is obtained as a linear combination of the
circled points, called support vectors, and is defined by a direction vector W and
a distance-from-origin scalar b.

early separable, slack variables are introduced, in order to allow points to exceed
margin borders:

yi(xi ·w + b) ≥ 1 − ξi (7)

The idea is to permit such situations, by controlling them by the introduction
of a cost parameter C. This parameter determines the sensibility of the SVM to
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classification errors: a high value of C strongly penalizes errors, also at the cost
of a narrow margin, while a low value of C permits some classification errors.
Intermediate values of C result in a compromise between the minimization of the
number of errors and maximization of the margin. Finally, the training process
results in the solution of the following QP problem:

max
∑

i

αi − 1
2

∑
i,j

αiαjyiyjxi · xj (8)

�∑
i=1

yiαi = 0 and 0 ≤ αi ≤ C (9)

The SVM approach could also be generalized to the case where the decision
function is not a linear function of the data: in this case we have the so-called
non-linear SVM. The idea under nonlinear SVMs is to project data points into a
high, even huge, dimensional Hilbert space H , by using a function Ξ such that:

Ξ : �d → H

x → z(x) = z(ξ1(x), ξ2(x), . . . , ξn(x))

and then separate projected data points through a hyperplane.
First of all, notice that the only way in which the data appear in the training

problem is in the form of inner products xi · xj. When projecting points x in
Ξ(x), the training process will still depend on the inner product of projected
points Ξ(xi) · Ξ(xj). Then, to solve the problem of nonlinear decision surfaces,
it is sufficient to modify the training and classification algorithms, substituting
the inner product between data points of the training set with a kernel function
K, such that:

K(xi,xj) = Ξ(xi) · Ξ(xj) (10)

To be a kernel, a function must verify Mercer conditions [12]. Some examples
of kernel are polynomial functions like K(x, y) = ((x ·y)+1)d, exponential radial
basis function and multi-layer perceptron. In this way, data points are projected
in a higher dimensional space, where a hyperplane could be sufficient to separate
the problem properly. It is important to notice that, by the use of this “kernel
trick”, the non linear decision surface is obtained in roughly the same amount
of time needed to build a linear SVM.

3.3 The Classification Strategy

For recognizing 3D faces we have employed the following strategy: firstly, the
face surface is sampled, in order to obtain a set of points to approximate. Subse-
quently, the Multilevel B-Spline Algorithm with refinement (that is a variation
to the basic algorithm described in [11]) is applied to this set of points, consider-
ing the control lattice coefficients of a certain level as features. Once extracted,
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the control lattice is linearized into a feature vector, using the standard raster
scan.

Face recognition is a multi-class classification problem, but Support Vector
Machines are binary classifiers. To extend SVMs to the multi-class case, we
adopted the strategy of binary decision trees proposed by Verri et al. [13], called
strategy of the tennis tournament, also adopted by Guo et al. in their paper [19].

Let us assume to have c classes. The training stage consists in building up
all possible SVMs 1-vs-13, combining all the available classes. The number of
possible (not ordered) pairs of classes is c(c−1)

2 . In this way, c(c−1)
2 SVMs are

trained. In the classification stage, a binary decision tree is built, starting from
the leaves, in which each pair of brother nodes represent a SVM. Given a test
image, recognition was performed following the rules of a tennis tournament.
Each class is regarded as a player, and in each match the system classifies the
test images according to the decision of the SVM of the pair of players involved
in the match. The winner identities, proposed by each SVM, will be propagated
to the upper level of the tree, playing again. The process continues until the root
is reached. Finally, the root will be labelled with the identity of the classified
subject. Because it is a priori impossible to know which SVM will define the
various levels of the tree, the necessity of training all possible SVMs 1-vs-1 is
now clear.

In Fig. 5, an example of this classification rule is proposed. In principle,
different choices of the starting configuration, regarding SVMs inserted as leaves,

1 2 43 5 6 7 8

1 3 6 7

1 6

1

Fig. 5. An example of multi-class classification.The subject to be recognized
belongs to class number 1. First, it is classified by the SVM relative to classes
1-2, 3-4, 5-6, 7-8. The winners of this first set of classifications will define the
upper level of the tree, constituted by SVMs relative to pairs 1-3 and 6-7. Finally,
the final SVM relative to classes 1 and 6 establishes the winner.

could lead to different results. Nevertheless, in practice, preliminary experiments
showed that averaged accuracies do not depend from the starting configuration.

3 We call this kind of SVMs 1-vs-1, in order to distinguish them from SVMs 1-vs-all,
that were trained to classify between faces of one class and faces of all other classes.
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If c does not equal to the power of 2, we can decompose c as: c = 2n1 +
2n2 + . . . + 2nI , where n1 ≥ n2 ≥ . . . ≥ nI . If c is an odd number, nI = 0;
otherwise, nI > 0. Then, we can build I trees, the first with n1 leaves, the
second with n2 and so on. Finally, starting from the I roots, we can build the
final tree (or, if necessary, recursively decompose I again in powers of 2). Even if
this decomposition is not unique, the number of comparisons in the classification
stage is always c − 1.

4 Experimental Results

The system has been preliminary tested on a set of 9 subjects, each with 10
images, varying expression. Five images were used for the training, while the
remaining were used for the testing. The parameters of the approach has been
chosen based of a previous analysis on a 2D face recognition problem [14]: the co-
efficients level of the Multilevel B-splines approximation was set to 16. The SVM
was used with the exponential Radial Basis Function kernel, using σ = 10. The
C parameter, which drives the regularization [20], was set to 5. With 150× 150
pixel images, the dimensionality of the control lattice, corresponding to the level
16, equals to

( 150
16 � + 3

) × ( 150
16 � + 3

)
= 144. Considering that images contain

150 × 150 = 22.500 pixels, level 16 permits a really noticeable dimensionality
reduction, equal to about two orders of magnitude, precisely 99,36%.

Results are presented in Table 1, for different combination of the training
and the testing set. We can note that results are very promising, in two cases

Training set Recognition Error Rate

1st 0%
2nd 2.22%

3rd 2.22%

4th 2.22%

5th 2.22%
6th 0%

Table 1. Recognition Error Rates on 6 different combinations of training and
testing sets.

the system reaches a perfect classification accuracy, and in the others it makes
only one error. Clearly only nine subjects for the testing phase are not enough
to have statistically significant results: nevertheless, a first impression about
the performances of the proposed approach could be derived, giving a promising
confidence for future developments. Anyway, a more deep testing, involving more
subjects and more environmental changes, will be topic of future investigations.
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5 Conclusions

In this paper a new complete low cost system for 3D face recognition has been
presented. The 3D face is acquired using a stereo methodology, that does not
require any expensive range sensors. The classification step is performed using
Support Vector Machines and Multilevel B-Splines coefficients. Preliminary ex-
perimental evaluation has produced encouraging results, making the proposed
system a promising low cost face recognition system.
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Abstract. In this paper, a two–level supervised feature selection algo-
rithm for local feature–based face recognition is presented. In the first
part, a genetic algorithm is used to determine the useful locations of the
face region for recognition. 2D Gabor wavelet–based feature extractors
are used for local image descriptors at these locations. In the second part,
the most useful frequencies and orientations of Gabor kernels are deter-
mined using a floating feature selection algorithm. Our major aim in this
study is to examine the relevance of the two common assumptions in the
local feature based face recognition literature: first, that the contribu-
tion of a specific feature to the recognition performance is independent
of others, and secondly, that feature extractors should be placed over the
visually salient points. In this paper, we show that one can obtain better
recognition accuracy by relaxing these two assumptions.

1 Introduction

In all of the computational face processing tasks such as face recognition, detec-
tion, and tracking, it is now widely accepted that the representation of a human
face plays a very important role. In much of the recent works, researchers try to
find an efficient representation method for a given task. In the face recognition lit-
erature, several approaches emerged during the last few years. These approaches
can be broadly classified into two groups: local feature–based approaches includ-
ing template–based methods, and global statistical approaches[1].

Feature–based approaches try to code face images using several different
methodologies. In the most simplistic way, one can represent a face image using
geometrical relations among various face regions. As this method, most feature–
based approaches try to localize various facial feature points, such as the coordi-
nates of eyes, mouth, nose, and eyebrows. Once these points are found or tracked,
you can represent the face image by features extracted from these points.

2D Gabor wavelet–based methods are frequently used in feature–based face
representation approaches as local feature extractors. Gabor kernels are similar
to the receptive fields of simple cells in the primary visual cortex. In addition,
multi–resolution and multi-orientation capabilities of Gabor kernels make them
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attractive for face representation. Since the full convolution of face images with
different Gabor kernels is very costly, sparse sampling is generally used where
local feature vectors are formed at each positions of Gabor kernels.

Typically, the features extracted by 2D Gabor wavelets have a very large
dimensionality. It is, therefore, essential to analyze the contribution of each fea-
ture component to performance of the task at hand. In the most general case,
one should examine three parameters of a Gabor kernel: location, frequency and
orientation [2, 3].

There were several studies that tried to emphasize the importance of Gabor
kernel parameters for face recognition. In [4], the discriminative power of the
nodes of a graph that is placed over face features is examined. The aim is to
learn the weights of nodes for face discrimination. The problem is formulated
as an optimization problem and simplex algorithm is used. According to their
results, the eyes are more important for discrimination of half profiles and frontal
faces compared to the mouth and chin. A similar approach was employed in [5]
where the aim of the learning algorithm is to find out a suitable subgraph which
only contains the nodes important for head finding and pose identification.

In a recent statistical analysis of 2D Gabor wavelet–based feature detectors
[6], univariate analysis of variance of 2D Gabor kernel activations has been used
to weight the contribution of each parameter (kernel location, frequency, and
orientation) in the representation according to its power of predicting similarity
of faces. The results show that the hairline area with the forehead and eye regions
provide useful information while the mouth, nose, cheek and lower part of the
outline region are the least useful part of a face for face recognition. In a similar
work, results confirm that the eyes and mouth are more stable for recognition,
whereas hair and nose region have large variations [7].

In almost all of the previous studies, either the importance of the locations of
Gabor kernels or the importance of the used frequencies and orientations are ex-
amined. Only in [6], all the three parameters are examined, but they assume the
independence of each feature dimension. This independence assumption is actu-
ally not valid, so one needs a more complex methodology to infer the usefulness
of each local feature element. In this paper, we have formalized our approach
as a subset selection problem, and removed the independence assumption. In
addition, we also wanted to show the validity of the commonly used sampling
technique of placing the Gabor kernels at salient facial feature positions such
as the corners of eyes, mouth and the tip of the nose, etc. In the rest of the
paper, we explain our local image descriptors in section 2, and feature selection
methodology in section 3. In section 4, we give experimental results for FERET
face database.

2 Image Representation Using 2D Gabor Wavelets

Local features are represented using the convolution results of the face image
with 2D Gabor wavelets at the convolution points. At each image point, we have
convolved the image with Gabor kernels having five different frequencies and
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eight different orientations. The Gabor kernel resolution is selected as 15 × 15
pixels in order to reduce the overlapping of kernels. The magnitudes of complex
outputs of Gabor convolutions are used as feature descriptors, giving a feature
vector of size 40 at each image point.

There are several methods to represent whole image using local jets. At one
extreme, images can be represented by the full convolution with Gabor kernels
at each pixel. Another approach would be to place a face graph where the nodes
of the graph lie on facial features. This approach requires a fine localization of
facial feature points. In between these two approaches, one can use a rectangular
sampling grid that is placed over the face region.

3 Feature Selection Methodology

In feature selection, the goal is to find a subset maximizing a selected criterion.
This criterion can be inter–class distance measure or the classification rate of
a classifier. The optimal solution could be found by using exhaustive search.
However, for higher dimensional problems, this solution is unusable. Branch and
bound type of algorithms can also give optimal solutions [8], but their application
is only limited to monotonic criterion functions, which does not hold in our case.
Alternative to optimal algorithms, several fast sub–optimal algorithms can be
used. Among them, the most frequently used ones are: sequential forward selec-
tion (SFS), sequential backward selection (SBS), plus–L–minus–R, and floating
search methods (SFFS, SFBS) [9]. Genetic algorithms (GA) and tabu search are
also proposed as solutions for a subset selection problem [9].

In order to apply feature selection algorithms to the task of finding optimal
Gabor kernel locations, and finding useful frequency/orientation parameters,
we have decomposed the problem into two parts by separating location finding
problem and frequency/orientation selection problem. In the first part, location
selection module tries to find optimal face regions in a supervised manner by
using all of the 40 different Gabor kernels having full frequency and orientation
range. Then, in the second part, frequency and orientation selection module tries
to come up with an efficient subset of all of the different Gabor kernels at the
found locations.

3.1 Kernel Location Selection

In order to find the most discriminative image locations of faces for recognition,
we have designed several feature selection scenarios. These scenarios are, namely:
best individual features (BIF), forward selection(SFS), floating forward search
(SFFS), and genetic algorithm. In the first three approaches, we represented the
face images using both rectangular grids (lattice) and manually positioned face
graphs. Lattice–based sampling is done via placing a 7 × 7 grid centered on the
face region. As a face graph, we have identified 30 facial feature points, as seen
in Figure 2.a , and used them as the nodes of our graph. In the GA approach,
we have used full convolutions of Gabor wavelets at each pixel in the image.
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3.2 Kernel Frequency and Orientation Selection

After finding useful kernel locations, similar feature selection methodology as
in the previous part should be carried out in order to eliminate irrelevant fea-
ture dimensions. For this purpose, we have applied another layer of SFFS–type
feature selection mechanism to the outputs of the location selection module.
Frequency and orientation selection module also works in a supervised manner,
and it produces a subset of a useful frequencies and orientations at each ker-
nel location. Since, we use all the information produced by location selection
module together, without dividing them according to the kernel locations, this
methodology also produces an almost optimal subset by taking into account the
dependence of each feature dimension.

4 Experiments and Results

In our experiments, we have used a subset of the FERET face database [10].
The used part of the database contains normalized frontal images of 146 sub-
jects. Each subject has 4 gray scale images of resolution 150× 130. In all of the
experiments, we have put 2 images of a subject into training set, and the rest
of the images into test set. Faces in the dataset contain facial expression and
illumination variations. In the recognition part, we have used 1–nearest neighbor
classifier.

4.1 Kernel Location Selection

BIF, SFS, and SFFS Based Selection In a recognition problem, each in-
dividual local feature has a certain degree of recognition power. Therefore, it is
useful to learn the importance of each local feature in order to obtain a better
discriminator. The best heuristic to measure the importance of each local feature
is to look at its individual recognition performance. In the BIF approach, one
can simply combine the most important N features into a final feature vector.
This simple idea can perform well only if each local descriptor contributes in-
dependently to the discrimination performance, irrespective of the existence of
other local features. However, in many cases, it would be proper to design a fea-
ture selector which additionally takes into account the relative information gain
when used with an existing feature set. Thus, we have used SFS algorithm in
order to consider this relative gain. More formally, we add the most informative
local feature at each step to an existing previously selected subset S.

SFFS algorithm takes this idea one step further by backtracking to remove
the least useful features from an existing feature subset to overcome the nesting
effect. Specifically, SFFS adds the most useful feature and then searches for a
feature in the existing subset S to discard if the removal of that feature improves
the discriminative power.

In our experiments, we have placed a rectangular lattice of size 7 × 7 over
the face region, and look for a useful subset of grid points for efficient face repre-
sentation for recognition task. In the second column of Table 1, the recognition
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performances of each method are presented. The recognition accuracies of BIF,
SFS, and SFFS are 84.54, 90.38, and 91.07 percent respectively. The recognition
performance of using all of the grid points is 86.94 percent. In Figures 1.a, 1.b
and 1.c, the most important 15 local feature positions are shown for BIF, SFS,
and SFFS algorithms. In Figure 1.a, circle sizes are proportional to each points
recognition performance. The best performance is obtained using the SFFS ap-
proach, where the selected subset performs even better than using all of the
grid points, and as expected, BIF approach performed worst among all of these
methods since it considers each feature independently.

In all of the three approaches, most of the selected grid points are at the upper
part of the face region. This result is largely due to the expression variations
present in the dataset especially, in the mouth region. In SFFS, the combination
of features extracted from eyebrows, the lower–center part of the forehead, the
nose region, and the lower part of the mouth seems important.

Table 1. Comparative analysis of BIF, SFS, and SFFS for lattice– and face
graph–based sampling methods. The numbers in parentheses show the number
of feature points for each representation

Lattice (49 pts) Face Graph (30 pts)

All pts 86.94 83.85

BIF (15 pts) 84.54 82.13

SFS (15 pts) 90.38 87.97

SFFS (15 pts) 91.07 87.97

(a) (b) (c)

Fig. 1. The locations of important facial feature combinations for a) BIF, b) SFS,
and c) SFFS approaches. The grid size in all figures is 7 × 7. The recognition
performances are 84.54, 90.38, and 91.07 percent, respectively.

Similarly, we have performed the same feature selection analysis to the man-
ually positioned face graph, in order to see the importance of the generally used
fiducial points. In the third column of Table 1, the recognition accuracies of BIF,
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SFS, and SFFS is shown. Using all of the 30 points in the face graph gives 83.85
percent classification performance, whereas an SFS–, or SFFS–based subset se-
lection can improve the performance to 87.97 percent. In Figures 2.b, 2.c, and
2.c, the locations of 15 useful fiducial points are shown. The points selected for
SFS and SFFS methods are the same, and they are generally at the upper face
region. Eyebrows, the corners of eyes, forehead, cheeks, and the outline of nose
seem to carry the most discriminative information.

When lattice and face graph based sampling is considered, lattice–based
approach performs better. Our results show that although fiducial points are
important, feature selection from a set of fiducial points greatly improves per-
formance. Furthermore, our experiments with the lattice approach show that
superior results can be achieved at the periphery of fiducial points.

(a) (b)

(c) (d)

Fig. 2. The locations of important facial feature combinations for manually po-
sitioned face graph. a) the locations of 30 fiducial points used, b) subset of 15
points for BIF c) subset of 15 points for SFS, d) subset of 15 points for SFFS.
The recognition performances are 82.13, 87.97, and 87.97 percent, respectively.

Genetic Algorithm–Based Selection One of the key motivations of our re-
search was to try to understand whether it is better to choose the locations
of facial features for local image descriptors. Therefore, we aimed to search for
useful combination of face locations from data, without using any a priori in-
formation, such as fiducial point coordinates. In contrast to the sparse sampling
methods (lattice, face graph), we have a much larger search space. The complex-
ity of the search space is determined by the exhaustive search of a combination
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of N feature points selected from all of the pixels in the face region. However, in
higher dimensions, such as in our problem, exhaustive search is unusable. So, we
have used a genetic algorithm which is sub–optimal but faster. It was shown that
genetic algorithms can reach near–optimal solutions quickly in feature selection
[9].

In our setting, genetic chromosomes contain the coordinates of the selected
number of face locations. We decided to use 15 points for face representation.
As fitness function, we have used the recognition performance of local image
descriptors of each gene in the chromosomes. The crossover and mutation pa-
rameters are 0.5 and 0.1, respectively. In both operators, we require that the
coordinates of face points in a single chromosome do not overlap too much in
order to extract independent local information as much as possible. This mini-
mum overlap distance between facial point is selected to be 9 pixels. Mutation
of a gene is handled by adding a random number within a specified range. This
range is dependent on the image resolution. As the populations evolve, we itera-
tively narrow this range for better convergence. The selection of new population
is based on the probability distribution of fitness values of each chromosome.
For quick convergence, elitism is employed, where the elitism ratio is 0.05. As
an initial population size, 200 is used.

In Figure 3, the 15 feature points found by the GA is shown. The recognition
performance of this feature subset is 96.50 percent which is even better than
the best sequential feature selection algorithm, namely SFFS. Again, all of the
feature points are gathered over the upper face region. Similar to results of the
SFFS algorithm, the outer corners of eyebrows, forehead region, and the outline
of nose provide the most useful information.

Fig. 3. The locations of important facial feature combinations for genetic algo-
rithm.

4.2 Kernel Frequency and Orientation Selection

In the second part of our two–level feature selection approach, we determine the
most useful orientations and frequencies of the selected kernel locations using
SFFS–based methodology. The output of the kernel location module is a feature
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vector of size 15 × 40, where each kernel contributes only one jet having a di-
mension of 15. In frequency and orientation selection part, we further study an
efficient subset of the output of the kernel location module. Therefore, in apply-
ing SFFS, we start with an empty set of selected features, and gradually add
additional features. Note that, each added dimension corresponds to a specific
frequency and orientation pair of the outputs of a previously selected Gabor
kernel at some specific location. Again, the feature selection criteria in SFFS is
the supervised classification accuracy of the selected subset.

Using this policy, we can extract a better feature subset of the original set,
because of the large dimensionality of the original set. In order to find the near
optimal subset, we have forced the SFFS algorithm to find a subset of dimension
600. Then, we select the minimal subset having a peak performance. In this way,
we improved the performance of the face recognition system on the test set from
96.50 percent to 99.32 percent, by using a subset of dimensionality 230 out of
600.

5 Conclusion and Future Work

In this work, a methodology to represent human faces in a local feature–based
approach is presented. Previous research on feature selection for face recognition
mainly focuses on the individual, independent contribution of each face point
to the recognition performance. We have shown that, it is better to formulate
the problem as a feature subset selection, where the addition or subtraction of
a feature point is evaluated with respect to an existing feature subset.

Another common assumption in previous approaches was to extract local fea-
tures from fiducial points. To test the validity of this assumption, we have used
different sampling methods coupled with different feature selection algorithms.
Our results show that although fiducial points are important, feature selection
from a set of fiducial points greatly improves performance, and superior recog-
nition accuracy can be achieved at the periphery of fiducial points. As a second
phase, we have introduced a selection of frequency and orientation parameters
using a sequential floating subset search. By extracting useful frequencies and
orientations at specific face locations, we have eliminated the irrelevant parts
of the original feature vector, and also improved the recognition performance
significantly.

In our experiments, sequential forward selection algorithm and genetic al-
gorithm gave the best performances, while the latter is superior to the SFFS.
In order to compare their performance with methods that selects features based
solely on their individual importance, we have implemented Best Individual Fea-
ture (BIF) algorithm. As expected, both SFFS and GA outperformed BIF–based
feature selection. In general, eyebrows and face points at the outline of nose seem
to provide the most discriminatory information for face recognition. As future
work, we will extend this methodology for pose invariant face recognition.
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Abstract. A completely automatic face recognition system is presented.
The method works on color and gray level images: after having localized
the face and the facial features, it determines 16 facial fiducial points,
and characterizes them applying a bank of filters which extract the pe-
culiar texture around them (jets). Recognition is realized measuring the
similarity between the different jets. The system is inspired by the elastic
bunch graph method, but the fiducial point localization does not require
any manual setting.

1 Introduction

Human face recognition has been largely investigated for the last two decades;
the most famous approaches adopt eigenfaces and neural networks.

In this paper we present an approach based on another technique: the elastic
bunch graphs [3], but with a new and completely automatic method to localize
sixteen facial fiducial points (the eyebrow and chin vertices, the nose tip, and
the eye and lip corners and upper and lower middle points).

We build three galleries, each one containing an image per person: the frontal,
right and left rotated face galleries. Given an image, the system extracts the
fiducial points, characterizes them, determines the head pose, and compares the
face with the proper gallery images. We observe that, while the face analysis is
done on the gray levels only, the fiducial point extractor works on both color
and gray level images, even if the one based on color is slightly more precise.

We present encouraging results obtained on databases of up to 200 subjects;
150 of them have been extracted from the FERET database, and 50 from our
color image database. The considered sub-set of the FERET database consists
in 8 gray level images per person organized according to the angle between the
subjects and the camera (0◦, ±15◦, ±25◦, ±40◦), and where two sets of frontal
view images, respectively with neutral and smiling expression, are included. Our
database consists in 6 images per person: two frontal, two right rotated and two
left rotated, with a miscellaneous of rotation angles and approximately neutral
expressions.
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2 Face and Facial Features Localization

The first step consists in localizing the face in the image. In [1] we have pre-
sented a method which localizes faces in generic color images searching at first
all the skin regions, and then validating the ones which contain at least one
eye. Regarding gray level images, we have proposed a method [2] that works on
images of face foregrounds with a homogeneous and light-colored background.
Subsequently, the facial features (eyes, nose, mouth, and chin) are localized [2].

We have tested the methods on 500 color images, and 2000 gray level ones,
obtaining correct results in the 95% of the cases.

3 Identification of Fiducial Points

In this section we describe the steps followed for the determination of the fiducial
points. The eyes and mouth are described by two parametric models derived from
the deformable templates proposed in [4] with significant variations.

Eyes. In the eye sub-image the iris is first identified with the Hough trans-
form for circumferences and the reflex, often present in it, is eliminated. Without
these preliminary steps the deformable template finds very often wrong contours.
The template [Fig.1.1], described by 6 parameters {xw, yw, a, b, c, θ}, is made of
two parabolas representing the eye arcs and intersecting at the eye corners.

Fig. 1. Eye and Mouth Deformable templates.

As Yuille did, we define an energy function Et to be minimized. Et is the
sum of three terms which are functions of the template parameters and of the
image characteristics (prior information on the eye shape, edges, and ‘white’ of
the eye). For color images, the characteristics are evaluated on the u plane of
the CIE-Luv space. More precisely: Et = Eprior + Ee + Ei, where:

1. Eprior = k1
2

(
(xw − xi)2 + (yw − yi)2

)
+k2

2 ·(b−2r)2+k3
2

(
(b − 2a)2 + (a − 2c)2

)
(xi, yi) is the iris center and r the iris ray obtained by the Hough transform.

2. Ee = − c1
|∂Rw| ·

∫
∂Rw

φe(x)ds

∂Rw represents the upper and lower parabolas, and φe is the edge image
obtained applying the Sobel edge detector.
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3. Ei = −c2

∫
Rw

φi(x)ds

where Rw is the region enclosed between the two parabolas, and φi is the
binary image obtained applying an adaptive thresholding able to balance the
number of white pixels on both sides of the iris. φi(p) is set to 255 if p is
white, to -100 if p is black.

After this, we follow the Yuille’s work obtaining a good eye description, and
we extract from it the two eye corners and the upper and lower middle points.

Fig. 2. Eye image processing: φe obtained from the u plane; φi obtained bina-
rizing the u plane; Final result.

Mouth. In the mouth sub-image we calculate the mouth corners, and the
entire border adopting a parametric model.

The mouth corners correspond to the extreme of the mouth cut, obtained
combining the image vertical derivative, and the image low values [2].

The mouth model [Fig.1.2] is parameterized by {l, h, ap, aul, bul, aur, bur},
and is made of one parabola, p, for the lower lip, and two cubics, ul and ur, for
the upper lip. Two energy functions to be minimized are defined; both of them
are functions of the template parameters but the first, Ei, depends on the image
colors/gray levels, while the second, Ee, depends on the edge image (IEdges).
The model is modified in two epochs considering respectively the Ei and the Ee

functions. More precisely:

1. Ei = c2

∫
R φi(x)dA

where R is the region enclosed among the 3 curves and φi is the binary image
obtained clustering in 2 clusters the MouthMap (for gray level images, the
MouthMap is the negative of the mouth sub-images itself, while for color
images it is: MouthMap = (255 − (Cr − Cb)) · C2

r ), and setting a pixel to
255 if it is white, to −80 if it is black.

2. Ee = c1(− 100
|ul|

∫
ul φe(x)ds− 100

|ur|
∫

ur φe(x)ds− 10
|p|

∫
p φe(x)ds), φe = IEdges.

Eyebrow and Chin. The eyebrow and chin description consists in the best
parabola which approximates their vertical derivative [Fig. 3].

Nose. The nose is characterized by very simple and generic properties: the
nose has a ‘base’ which gray levels contrast significantly with the neighbor re-
gions; moreover, the nose profile can be characterized as the set of points with
the highest symmetry and high luminance values; finally we can say that the
nose tip lies on the nose profile, above the nose base line, and is bright [Fig. 3].
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Fig. 3. Examples of facial feature and fiducial point description.

3.1 Experimental Results

The method has shown very good performances (error of 1 or 2 pixels) under
some commonly accepted assumptions: the head image dimensions are not lower
than (100 × 100) pixels; the head rotation is at most of 45◦; the mouth are
closed and the eyes opened; the illumination is not too low, and does not create
particular shadows on the faces.

We observe that errors of one or two pixels do not constitute critical problems
for the subsequent steps, since both the face characterization and recognition are
not based on the fiducial points punctual values, but on a local analysis of the
regions around them, making the system more robust.

4 Face Dimension Normalization and Pose Determination

The previous steps have dealt with faces of any scale and different orientation;
however the face characterization and recognition are very sensitive to these
kind of variations. We thus proceed rescaling the images to a common size and
determining the head rotation. To these purposes, we consider the triangle whose
vertices are the nose tip (Nt) and the eye external corners (C1, C2). We first
normalize the image so that the triangle area is of 2000 pixels; subsequently
we compare the length of the two segments which connect Nt to C1 and C2

respectively. In case of frontal image, the two segments are approximately of the
same length, while, when the head is rotated, the two lengths vary greatly and
according to the rotation side. We thus recognize three different poses: frontal,
right and left rotated.

5 Face Characterization

In order to characterize the fiducial points, we have experimented two techniques:
the Gabor wavelet transform and the steerable Gaussian first derivative basis
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filters. The first technique has shown greater robustness with respect to rotation
and little error in the fiducial point localization. We thus describe it only.

To characterize a fiducial point, we convolve the portion of gray image around
it with a bank of Gabor kernels; following the idea of Wiskott [3], 5 different
frequencies and 8 orientations are exployed. The obtained 40 coefficients are
complex numbers. A jet J is obtained considering the magnitude parts only.

Applying the Gabor wavelet transform to all the facial fiducial points, we ob-
tain the face characterization, consisting in a jets vector of 40×N real coefficients
where N is the number of visible fiducial points.

To recognize a face image I we compute a similarity measure between its jets
vector and the ones of all the images Gi in the corresponding gallery, and we
associate I to the Gi which maximizes the measure of similarity. Being J i

n the
n-th jet of the jets vector i, we define the similarity between two jets vector as:

Sv(V 1, V 2) =
1
N

N−1∑
n=0

J1
n · J2

n

‖J1
n‖‖J2

n‖

6 Experimental Results

We have experimented the whole face recognition system on databases of 50,
100, 150, and 200 subjects. For each of them, three images are catalogued in
the galleries according to the pose. Regarding the FERET database, the frontal
and neutral expression image set, and the ±40◦ image sets are used as gallery
images, while the other are used to test the system. In the following, we report
the most significant results.

At first, in order to highlight the system behavior according to the different
rotation angles, we report the experiments carried out referring to the FERET
images only. In particular, we give all the details for the most challenging exper-
iment, and summary results for the other cases.

Analyzing the results exhibited in table 1, we notice that the system is more
robust to little rotation disparity (e.g. second line) than to expression variations
(first line). However, incrementing the rotation angle disparity, the performances
decrease (e.g. sixth line); it thus arises the importance of having an automatic
face pose estimator which allows to compare each test image to the gallery with
the less angle disparity. The bold lines in the table reflect this choice.

In table 2 we report the recognition performance obtained using subsets of
fiducial points. We remark that most of the discriminating face characteristics are
in the upper part of the faces, above all if the face expression varies significantly
(see first line of the table).

Finally we report the results obtained, referring to a gallery of 200 subjects
(150 from the FERET database and 50 from our color image database), and
using all the fiducial points to test the system. In the 92.5% of the cases the best
match corresponded to the right person, while in 95.6% of the cases the correct
person’s face was in the top five candidate matches.



152 P. Campadelli and R. Lanzarotti

Gallery Test Best rank In top 5

0◦ 0◦ 70 82

0◦ +15◦ 94 96

0◦ −15◦ 95 97

0◦ +25◦ 90 96

0◦ −25◦ 93 96

+40◦ +15◦ 90 96

+40◦ +25◦ 96 98

−40◦ −15◦ 78 93

−40◦ −25◦ 95 96

Table 1. Recognition results ob-
tained referring to the 150-subject
galleries, and exploiting all the 16
fiducial points.

GalleryTest
Best rank In top 5
EEH MCH EEH MCH

0◦ 0◦ 26 68 46 79

0◦ +15◦ 93 93 95 96

0◦ −15◦ 89 92 95 95

+40◦ +25◦ 81 91 91 95

−40◦ −25◦ 72 93 82 95

Table 2. Recognition results ob-
tained referring to the 150-subject
galleries, in case of partial occlu-
sions: EEH: eyes and eyebrows hid-
den; MCH: mouth and chin hidden.

7 Conclusions

We have presented a system that, given a face image, extracts the facial fiducial
points, determines the head pose, normalizes the image, characterizes it with
its jets vector, and compares it with the ones in the corresponding gallery. The
image is recognized to be the most similar one in the gallery.

The facial feature detection and description methods have been tested on
2500 face foregrounds images detecting the fiducial points with high accuracy
(errors of 1 or 2 pixels are negligible) in 93% of the images.

The whole face recognition system has been tested on a database of 1500
images of 200 subjects. We can affirm that our fiducial point extractor allows
to obtain the same recognition performances as the elastic bunch graph used in
[3], while being completely automatic.
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Abstract. In this paper two methods for human face recognition and the 
influence of location mistakes are shown. First one, Principal Components 
Analysis (PCA), has been one of the most applied methods to perform face 
verification in 2D. In our experiments three classifiers have been considered to 
test influence of location errors in face verification using PCA. An initial set of 
“correct located faces” has been used for PCA matrix computation and to train 
all classifiers. An initial test set was built considering a “correct located faces” 
set (based on different images than training ones) and then a new test set was 
obtained by applying a small displacement in both axis (20 pixels) to the initial 
set. Second method is based on geometrical characteristics constructed with 
facial and cranial points that come from a 3D representation. Data are acquired 
by a calibrated stereo system. Classifiers considered for both methods are k-
nearest neighbours (KNN), artificial neural networks: radial basis function 
(RBF) and Support Vector Machine (SVM). Given our data set, results show 
that SVM is capable to classify correctly in the presence of small location 
errors. RBF has an acceptable correct rate but the number of false positives is 
always higher than in the SVM case. 

1   Introduction 

In recent years three main approaches to face verification problem using only 2D 
information has appeared. 

Principal Components Analysis (PCA) and related methods such as Fisherfaces [1] 
[2] Methods based on PCA consider only global information for the face. Using PCA, 
a dimensional reduction is performed in order to obtain a compact representation of 
the face. 

Elastic Bunch Graph Matching (EBGM) [3] uses wavelet transformation to obtain 
local description of the face and a graph to obtain the global face description 

Local Feature Analysis (LFA) [6], similar to PCA, considers different kernel 
functions to obtain local features (eyes, mouth and nose). In this case, selection of 
facial features and kernels is an open issue. 
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Research is also developed considering 3D information [5][6][7]. Laser scanners 
to obtain 3D data are very expensive, so a stereo pair was used to acquire the 3D data. 

In our experiment, two methods of representing a face are considered: PCA in 2D 
representation and geometrical characteristics in 3D representation. 

Principal Components Analysis offers a compact representation of the face, well 
suited for its transmission. in a distributed environment. On the other hand, PCA is 
quite sensitive to small displacements in face location. To observe the sensitivity of 
classifiers to these location errors, small displacements were introduced. 

The 3D description is obtained by the calibration of a stereo pair of cameras for 
head navigation. The algorithm has been tested in the 3D reconstruction of real faces.  

Experiments presented in this paper compare results obtained with three 
classifiers. K-Nearest Neighbours (KNN), artificial neural networks: Radial Basis 
Functions (RBF) and Support Vector Machine (SVM) [8]. 

2   Experimental Set Up Description 

Two set ups were built: one for 2D image capture and one for 3D characteristics 
acquisition. 

2D set-up was built to measure only location errors, so illumination and distance 
camera–subject were maintained unchanged. Two diffuse lights offered controlled 
illumination conditions. CCD was placed firmly in front of the subject. Subjects were 
forced to change its pose between acquisitions of two consecutive images.  

The 2D database is formed by 29 subjects (22 male and 7 female) with 12 images 
per subject. 8 images were used for train and 4 for test. Image size is 320 x 240 pixels 
with face covering great part of the image. 

3D set-up was built by a stereo pair of CCD cameras. Figure 1 shows the 
considered architecture. 
 

 

  Figure 1. A diagram of the stereo geometry considered.           Figure 2. Calibration plate. 

 Camera calibration is a crucial phase in most vision systems and a first step in 3D 
reconstruction. Using a plate calibration is possible to obtain a set of 3D data.  Figure 
2 shows the calibration plate used. It has 193 points distributed over two planes. The 
3D database is formed by 20 subjects (10 male and 10 female) with 8 images per 
subject (than belong to 4 stereo pairs). Four images were used for train and four for 
test.  
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3 Algorithm Description 

3.1   2D System 

Face verification process is split in three parts: Face location, PCA computation and 
classification. 

3.1.1   Face Location 
In this step, background is eliminated. Then a convolution with a face template is 
done. When the convolution reaches the maximum over the images, a window 
containing the face is extracted. Once the face is located, a set of “correct located 
faces” is built. These images were considered for computing PCA matrix and training 
all classifiers.  To test location errors, three different test set were built. An initial test 
set was built in a similar way as explained before, considering the maximum of 
convolution (“correct located images”). To obtain two test sets, small displacements 
were applied in both axes (0 and 20 pixels). This gives us two sets of images, each set 
corresponds to images displaced the same value. Final dimension was 130 x 140 
pixels. In this step all images were also converted from colour to grey scale (Figure 3 
and 4). 
 
 

                                                       

Figure 3 and 4. A correct located face and the same face, but displaced 20 pixels in both axes 

3.1.2   PCA Computation 
PCA transformation matrix is computed using a number of eigenvectors that retains 
almost 100% of the initial variance. Only one PCA matrix is computed with the 
“correct located faces” set. In our experiment eight images per subject are considered 
to compute PCA matrix. Our tests show that 150 eigenvalues are needed to explain 
the 99,9% of the variance. 

3.2   3D System 

The geometrical characteristics are constructed with facial and cranial points similar 
to those used by forensic doctors and legal police. Initially thirty points were 
considered, but only the fourteen most robust were selected. These points had to be 
manually introduced in the images captured by the stereo pair and after that the 
characteristics in the 3D space were calculated. To minimize the error of the manual 
location of these points, the epipolar rectification (see Figure 3) was considered. 
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3.3   Classification 

Three classifiers has been considered: K-nearest neighbours (KNN), Artificial Neural 
Networks: Radial Basis Function (RBF) and Support Vector Machine (SVM).  

KNN is a simple and linear classifier but it result can be considered as an initial 
clue of the spatial configuration of face clusters. K=1 and k=3 has been considered. 
RBF has been used as an artificial neural network classifier for face verification. In 
our experiment, Gaussian functions considered are symmetric and centred in the 
middle of each face subject cluster. SVM could be easily used in verification 
problems (recognizing one subject against rest). In our experiment, linear kernel has 
been considered.  

4   Experimental Results 

4.1   2D Results 

Results are represented in a ROC (Receiver Operator Characteristic) curve, one curve 
per classifier and location condition There are four possible experimental outcomes: 
true positive, true negative, false positive and false negative.   

KNN classifier output is more reliable if distance is low, so a positive verification 
has been considered when output value is smaller than acceptance threshold. SVM 
and RBF provide opposite results, so positive verification has been considered when 
the output value is larger than acceptance threshold. The magnitudes used as threshold 
for each classifier are KNN Euclidean distance, RBF output neuron value and SVM 
function decision value. Graphical results are obtained in a cross validation procedure. 
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Figure 5. KNN results for each face location 
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Figure 6. RBF results for each face location 
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Figure 7. SVM results for each face location 

4.2   3D Results 

Classification conditions are the same as 2D. Figures 8, 9 and 10 show the results. 
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Figure 8. KNN results. 3D Data.                           Figure 9. RBF results. 3D Data. 
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Figure 10. SVM results. 3D Data 

5   Conclusions 

Given our 2D dataset, worst results have been achieved with KNN. SVM reduces 
False Positive and False Negative percentages in all the location cases. RBF is more 
sensitive to location errors (Figures 5, 6 and 7). 

Results obtained by the system applied to the 3D data, have been worst due to the 
important error location introduced in the manual point selection stage. KNN results 
are really poor, but with a better classifier like SVM, correct rate increases it value 
significantly (Figures 8, 9 and 10). 
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